
Preconditioned Plug-and-Play ADMM
with Locally Adjustable Denoiser
for Image Restoration
Mikael Le Pendu and Christine Guillemot

Outline 01. Introduction

02. Preconditioned Plug-and-Play ADMM

03. Training of a Locally Adjustable Denoiser

04. Applications and Results

05. Conclusion

01
Introduction

01. Introduction

Plug-and-Play priors with ADMM

Inverse problems

• E.g. Linear degradation model with additive Gaussian noise:

𝑏 = 𝐴𝑥 + 𝜎 ⋅ 𝑛

𝑏: degraded image
A: degradation matrix (e.g. subsampling)
𝑥: (unknown) ground truth image
𝜎 ⋅ 𝑛: additive Gaussian noise (s.t.d. 𝜎)

Data fidelity term Regularization term
• Represents prior knowledge on images
• Penalizes unlikely solutions, i.e. "unnatural" images

𝑥∗ = argmin
𝑥

1

2
𝐴𝑥 − 𝑏 2

2 + 𝜎2 ⋅ 𝑅(𝑥)

01. Introduction

Plug-and-Play priors with ADMM

Inverse problems

• E.g. Linear degradation model with additive Gaussian noise:

• Question 1: How to define 𝑹?

• Question 2: How to solve the minimization?

• In the plug-and-play approach:

• We answer question 2 first

• No need to define R explicitly!

𝑥∗ = argmin
𝑥

1

2
𝐴𝑥 − 𝑏 2

2 + 𝜎2 ⋅ 𝑅(𝑥)

01. Introduction

Let’s answer Question 2 first: how to solve the minimization?

• Split the two terms using two variables with equality constraint

• Equivalent mathematically

• But now we can decouple the two terms and solve alternately for x and y

Plug-and-Play priors with ADMM

𝑥∗ = argmin
𝑥

1

2
𝐴𝑥 − 𝑏 2

2 + 𝜎2 ⋅ 𝑅 𝑥

= argmin
𝑥,𝑦
𝑥=𝑦

1

2
𝐴𝑥 − 𝑏 2

2 + 𝜎2 ⋅ 𝑅 𝑦

01. Introduction

Augmented direction method of multipliers (ADMM)

Plug-and-Play priors with ADMM

𝑥𝑘+1 = argmin
𝑥

1

2
𝐴𝑥 − 𝑏 2

2 +
𝜌

2
⋅ 𝑥 − 𝑦𝑘 −

𝑙𝑘

𝜌
2

2

𝑦𝑘+1 = argmin
𝑦

1

2
𝑦 − 𝑢 2

2 +
𝜎2

𝜌
𝑅(𝑦), with u = 𝑥𝑘+1 +

𝑙𝑘

𝜌

𝑙𝑘+1 = 𝑙𝑘 + 𝜌(𝑥𝑥+1 − 𝑦𝑘+1) 𝑙 : dual variable (helps satisfy the constraint x=y)
𝜌: penalty parameter (also ensures the constraint x=y)

1. x-subproblem:
only depends
on data term

2. y-subproblem:
only depends on

regularization term

3. Dual update:

➔ has a closed-form solution

01. Introduction

Augmented direction method of multipliers (ADMM)

• y-subproblem (i.e. regularization sub-problem)

• Similar form as original inverse problem but without degradation matrix (i.e. 𝐴 = 𝐼)

➔ Equivalent to Gaussian denoising problem with the prior defined by 𝑅 and for noise variance
𝜎2

𝜌

➔ No need to define R explicitly: use instead a Gaussian denoiser to find 𝑦𝑘+1 directly

e.g. « Plug » in the algorithm a high performance neural net trained for denoising

Plug-and-Play priors with ADMM

𝑦𝑘+1 = argmin
𝑦

1

2
𝑦 − 𝑢 2

2 +
𝜎2

𝜌
𝑅(𝑦)

No degradation matrix

01. Introduction

Limitations of the Plug-and-Play approach

• No convergence guarantee for an arbitrary denoiser (not convex optimization)

• Can be overcome by:

• Training a denoiser with desirable properties for better convergence

➔May reduce accuracy of the underlying image prior

• "Unrolling" the algorithm’s iterations for end-to-end training of the denoiser

➔ Denoiser trained (or fine-tuned) to optimize the performance of the algorithm for each task

➔ But: less universal approach (task-specific training).

• Proposed approach: Apply preconditioning to the algorithm

➔ Adapt the preconditioner to each task for improved convergence and quality

➔ Preserve the genericity of the plug-and-play approach

02
Preconditioned
Plug-and-Play ADMM

02. Preconditioned Plug-and-Play ADMM

Preconditioned ADMM formulation

Re-writting the original problem

• Change of variable: 𝑥 = 𝑃 𝑥

• Choose 𝑃 such that 𝐴𝑃 is better conditioned than 𝐴

• e.g. Ideally 𝑃 = 𝐴−1➔ 𝐴𝑃 = 𝐼 (but 𝐴 is not invertible in general)

𝑥∗ = argmin
𝑥

1

2
𝐴𝑃 𝑥 − 𝑏 2

2 + 𝜎2 ⋅ 𝑅(𝑃 𝑥)

𝑥∗ = 𝑃𝑥∗

02. Preconditioned Plug-and-Play ADMM

Preconditioned ADMM formulation

Re-writting the ADMM

𝑥𝑘+1 = argmin
𝑥

1

2
𝐴𝑃 𝑥 − 𝑏 2

2 +
𝜌

2
⋅ 𝑥 − 𝑦𝑘 −

𝑙𝑘

𝜌
2

2

𝑦𝑘+1 = argmin
𝑦

1

2
𝑦 − 𝑢 2

2 +
𝜎2

𝜌
𝑅(𝑃 𝑦), with 𝑢 = 𝑥𝑘+1 +

𝑙𝑘

𝜌

𝑙𝑘+1 = 𝑙𝑘 + 𝜌(𝑥𝑥+1 − 𝑦𝑘+1)

1. x-subproblem:

2. y-subproblem:

3. Dual update

02. Preconditioned Plug-and-Play ADMM

Preconditioned ADMM formulation

Breaking the assumption of independent and identically distributed (i.i.d.) noise

𝐷𝑅(𝑢𝑛𝑜𝑖𝑠𝑦 , 𝜎) = argmin
𝑦

1

2
𝑦 − 𝑢𝑛𝑜𝑖𝑠𝑦

2

2

+ 𝜎2 ⋅ 𝑅(𝑦)

෩𝐷𝑅(𝑢𝑛𝑜𝑖𝑠𝑦 , Σ
1
2) = argmin

𝑥

1

2
Σ−

1
2(𝑥 − 𝑢𝑛𝑜𝑖𝑠𝑦)

2

2

+ 𝑅(𝑥)

Denoising for i.i.d.
Gaussian noise

of s.t.d. 𝜎 (i.e. variance 𝜎2)

Denoising for non-i.i.d.
Gaussian noise

of covariance matrix Σ

02. Preconditioned Plug-and-Play ADMM

Preconditioned ADMM formulation

Breaking the assumption of independent and identically distributed (i.i.d.) noise

𝐷𝑅(𝑢𝑛𝑜𝑖𝑠𝑦 , 𝜎) = argmin
𝑦

1

2
𝑦 − 𝑢𝑛𝑜𝑖𝑠𝑦

2

2

+ 𝜎2 ⋅ 𝑅(𝑦)

෩𝐷𝑅(𝑢𝑛𝑜𝑖𝑠𝑦 , Σ
1
2) = argmin

𝑦

1

2
Σ−

1
2(𝑦 − 𝑢𝑛𝑜𝑖𝑠𝑦)

2

2

+ 𝑅(𝑦)

Denoising for i.i.d.
Gaussian noise

of s.t.d. 𝜎 (i.e. variance 𝜎2)

Denoising for non-i.i.d.
Gaussian noise

of covariance matrix Σ

𝑦𝑘+1 = argmin
𝑦

1

2
𝑦 − 𝑢 2

2 +
𝜎2

𝜌
𝑅(𝑃 𝑦) = 𝑃−1෩𝐷𝑅 𝑃𝑢,

𝜎

𝜌
𝑃 ➔ Preconditioning matrix proportional to

the square root of covariance matrix

03
Training of a
Locally Adjustable Denoiser

03. Training of a Locally Adjustable Denoiser

State-of-the-art DRUNet Denoiser

DRUNet (combine ResNet and U-Net ideas) with input noise level map [1]

Noisy image

Noise level map

C
o

n
v

4
 R

es
id

u
al

b
lo

ck
s

St
ri

d
e

d
C

o
n

v

T
C

o
n

v

C
o

n
v

4
 R

es
id

u
al

b
lo

ck
sSkip connections

Denoised image

[1] K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte, “Plug-and-play image restoration with deep denoiser prior,” PAMI, 2021.

03. Training of a Locally Adjustable Denoiser

State-of-the-art DRUNet Denoiser

Problem with original DRUNet denoiser

• Trained only for constant noise level maps

DRUNet

Noise level map Noisy image Denoised image

Constant standard
deviation
𝜎 = 50

Pixel-wise
standard
deviation
in [0,100]

Bad generalization
to variable

standard deviation

DRUNet

03. Training of a Locally Adjustable Denoiser

Extending for Locally Adjustable Denoising

Noise level map generation for training

• At each pixel 𝑖, we generate a random standard deviation value 𝑆𝑖, using:

𝑆𝑖 = 𝛼 ⋅ (𝑋𝑖 ⋅ 1 −𝑊 + 𝑂 ⋅ 𝑊)
X𝑖, 𝑂, 𝑊 : random variables with distribution 𝒰 0,1

𝛼: maximum standard deviation

03. Training of a Locally Adjustable Denoiser

Extending for Locally Adjustable Denoising

Noise level map generation for training

• At each pixel 𝑖, we generate a random standard deviation value 𝑆𝑖, using:

𝑆𝑖 = 𝛼 ⋅ (𝑋𝑖 ⋅ 1 −𝑊 + 𝑂 ⋅ 𝑊)
X𝑖, 𝑂, 𝑊 : random variables with distribution 𝒰 0,1

𝛼: maximum standard deviation

low 𝑊 (𝑊 = 0,2)➔ strong variations

𝑂 = 0,2 𝑂 = 0,8

03. Training of a Locally Adjustable Denoiser

Extending for Locally Adjustable Denoising

Noise level map generation for training

• At each pixel 𝑖, we generate a random standard deviation value 𝑆𝑖, using:

𝑆𝑖 = 𝛼 ⋅ (𝑋𝑖 ⋅ 1 −𝑊 + 𝑂 ⋅ 𝑊)
X𝑖, 𝑂, 𝑊 : random variables with distribution 𝒰 0,1

𝛼: maximum standard deviation

low 𝑊 (𝑊 = 0,2)➔ strong variations high 𝑊 (𝑊 = 0,8)➔ small variations

𝑂 = 0,2 𝑂 = 0,8 𝑂 = 0,2 𝑂 = 0,8

03. Training of a Locally Adjustable Denoiser

Extending for Locally Adjustable Denoising

Result of Locally Adjustable DRUNet denoiser

DRUNet

Noise level map Noisy image Denoised image

Constant standard
deviation
𝜎 = 50

Pixel-wise
standard
deviation
in [0,100]

Same
performance

in constant case

DRUNet

Good
performance

in variable case

04
Applications and Results

04. Applications and Results

Treated applications

Sampling problems

Poisson denoising

➔ Variance of Poisson noise equal to the pixel’s value in the ground truth

Interpolation

Demosaicing
➔Error variance of the estimates is expected to depend
on the pixel position (e.g. no error for sampled pixels)

𝑥
(ground truth)

Poisson
denoising

Completion

04. Applications and Results

Sampling problems

Choice of preconditioning matrix

Sampling mask 𝑚

interpolation completion demosaicing

➔ 𝐴𝑖𝑖 = 𝑚(𝑖)

Diagonal matrix

𝑝 =
1 + 𝜖

𝑚 + 𝜖
➔ 𝑃𝑖𝑖 = 𝑝(𝑖)

04. Applications and Results

Sampling problems

Interpolation Results

• 4x upsampling

• Without preconditioning the PnP-ADMM fails to
recover all the details

• Better and faster recovery with preconditioning

Ground truth bicubic

PnP-ADMM w/o preco.
N=100 iterations

PnP-ADMM with preco.
N=10 iterations

04. Applications and Results

Sampling problems

Completion Results

• 10% known pixels (randomly sampled)

• Without preconditioning the PnP-ADMM fails to
recover all the details

• Better and faster recovery with preconditioning

Ground truth
PnP-ADMM w/o preco.

N=200 iterations

PnP-ADMM w/ preco.
N=20 iterations

input

Total variation
Regularization

Diffusion method

04. Applications and Results

Sampling problems

Joint Demosaicing and Denoising

• Plug-And-Play ADMM better than reference
methods (DeepJoint, MMNet)

• More details preserved with preconditioning

• But color artifacts remain in challenging areas

➔ Locally Adjustable Denoiser trained from
random maps does not perform well with
demosaicing pattern

Matlab

MMNetDeepJoint

PnP-ADMM w/o preco. PnP-ADMM w/ preco.

Ground Truth

04. Applications and Results

Sampling problems

Joint Demosaicing and Denoising

• Plug-And-Play ADMM better than reference
methods (DeepJoint, MMNet)

• More details preserved with preconditioning

• But color artifacts remain in challenging areas

➔ Can be corrected by training a Locally Adjustable
Denoiser with the preconditioning pattern used in
demosaicing instead of random noise level maps.

Matlab

MMNetDeepJoint

PnP-ADMM w/o preco. PnP-ADMM w/ preco.

Ground Truth

04. Applications and Results

Poisson Denoising

Different data fidelity term

• Quadratic data fidelity term no longer suitable

• x-subproblem (i.e. related to data term) still has a closed-form solution

Choice of preconditioning matrix
• 𝑃 proportional to square root of noise covariance matrix Σ in the denoising step

• For an image corrupted with Poisson noise : pixel-wise noise variance = ground truth pixel value

➔ Take 𝑃𝑖,𝑖 = 𝑏𝑖 (i.e. square root of the noisy image)

➔ Update 𝑃 from the new estimate at each iteration

−𝑏⊤ ln 𝑥 + 𝟙⊤𝑥𝑥 − 𝑏 2
2

Data term for
Gaussian noise

Data term for
Poisson noise

04. Applications and Results

Poisson Denoising

Results

• Finer details recovered with the
preconditioning

• In this case, preconditioning does
not make the algorithm faster

Ground truth Noisy

PnP-ADMM
w/o preco.

(N=6 iterations)

PnP-ADMM
w/ preco.

(N=6 iterations)

05. Conclusion

Conclusion

Advantages:

• Preconditioning significantly improves the results of the plug-and-play ADMM for several applications

• Less iterations required

• Enables trading off universality for quality (i.e. fine tuning denoiser for specific noise level patterns)

Limitations:

• Impractical to train a universal denoiser for arbitrary noise covariance

• So far, only for diagonal preconditioning matrix ➔ suits problems with diagonal degradation matrix

Extending to applications with non-diagonal degradation matrix (e.g. deblurring/super-resolution)
➔ Requires other types of denoisers

