What is up with Point Cloud Compression and Representation

Ricardo L. de Queiroz

Universidade de Brasília

Point clouds: the case for them

Voxels and points

- Voxelized point cloud (e.g. 512×512×512 grid)
- Voxels $V_i = [x_i, y_i, z_i, R_i, G_i, B_i, A_i]$

Color and geometry

Telepresence

Idea for point clouds:

- Scan a 3D real-time volumetric information of a person;
- Encode the data and send it to decoder;
- Receiver immerses the 3D data in his own environment;
 - ✤ using equipment such as Hololens or even smart phones

First Real-time Voxelization at MSR

Second real-time MSR voxelization

Second Real Time Voxelization

Holoportation at MSR

- Capture a point cloud of the person/object
 List of occupied voxels: (x,y,z) (r,g,b)
- Transmit point cloud
- Immerse object into scene- render on Hololens

Holoportation

holoportation

http://research.microsoft.com/holoportation

Interactive 3D Technologies

http://research.microsoft.com/groups/i3d

Microsoft Research

- History
- V-PCC
- G-PCC
- Extras (plenoptic, ML, interpolation)

Microsoft upper body

(9 and 10 levels, 200 frames)

8i full body (10 levels, 300 frames)

HD Maps

- Video-based solution
- Quick time-to-Market. (use existing HEVC decoding hardware)

V-PCC Decoder

V-PCC projections on patches

V-PCC (TMC-2)

Low quality

Good quality

V-PCC (best quality)

G-PCC

G-PCC coding

- Geometry coding
 - Neighbour-dependent Entropy Context

- Attribute (color) coding
 - RAHT
 - coefficient coding with inter-depth up-sampling
 - LoD

Exchange degradations

G-PCC (RAHT) lossless geometry

Octree/PredLift (r01 r02 r03 r05)

Octree/RAHT (r01 r02 r03 r05)

Trisoup (raht r01 r03 r05 r06)

New Trends in PCC

What is up

- ML PCC
- LIDAR
 - Radial prediction of geometry
 - Radial prediction of attributes
 - LL-LC (low latency low complexity)
- Motion estimation
- Scalability embededness

ML-PCC

- MPEG is investigating machine-learning-based point cloud compression
- A. Guarda, A.; N. M. M. Rodrigues, F. Pereira, F., Adaptive Deep Learning-based Point Cloud Geometry Coding, IEEE Journal of Selected Topics in Signal Processing Vol. 15, N° 2, pp. 415 - 430, February, 2021.
- M. Quach, G. Valenzise, F. Dufaux, Improved Deep Point Cloud Geometry Compression arXiv:2006.09043 2020
- Jianqiang Wang, DandanDing, Zhu Li, Zhan Ma, "Multiscale Point Cloud Geometry Compression", arXiv:2011.03799v1, 2020.
- ISO/IEC JTC 1/SC 29/WG 7 No174, "Performance Analysis of Currently Albased Available Solutions for PCC". (Under editing / A. Zaghetto).

 Also included results using RDO downsampling (into G-PCC) and post-processing by Fractional Super-resolution

 T. M. Borges, D. C. Garcia and R. L. de Queiroz, `` Fractional Super-Resolution of Voxelized Point Clouds, TechRxiv, preprint, https://doi.org/10.36227/techrxiv.15032052.v1, 2021.

ML-PCC preliminary tests

ML-PCC preliminar tests

LIDAR – different data

- Laser scans are radial passes
- Better encoding of the geometry in polar coordinates

Universidade de Brasilia

LIDAR data coding

Predictive Geometry Coding

- Adaptive Azimuthal Angle Quantization
- Improved Coding of Azimuthal Angle Residual
- Improved Coding of Number of Azimuthal Angle Steps
- Improved Radius Residual Sign Coding and Points Ordering
- Improved Predictor List
- Octree Geometry Coding
 - Residual Coding of Angular Mode in IDCM
 - Improved Azimuthal Mode in IDCM
 - Context Enhancement of Azimuthal IDCM
- Inter Prediction for Octree Geometry Coding
 - Inter Prediction for Octree Geometry Coding Based on Global Motion
 - Improved Planar Mode Coding for InterEM
- Inter Prediction for Predictive Geometry Coding
 - Inter Prediction for Predictive Geometry Coding
 - Additional Predictor Candidate
 - Improved Inter Prediction Flag Coding
- Low-Latency and Low-Complexity Dedicated Codec (LL-LC²)

- Laser scans are radial passes
- Better encoding of the geometry in polar coordinates

LIDAR sample technologies

Predictive Geometry Coding

- Adaptive Azimuthal Angle Quantization
- Improved Coding of Azimuthal Angle Residual
- Improved Coding of Number of Azimuthal Angle Steps
- Improved Radius Residual Sign Coding and Points Ordering
- Improved Predictor List

Octree Geometry Coding

- Residual Coding of Angular Mode in IDCM
- Improved Azimuthal Mode in IDCM
- Context Enhancement of Azimuthal IDCM

Inter Prediction for Octree Geometry Coding

- Inter Prediction for Octree Geometry Coding Based on Global Motion
- Improved Planar Mode Coding for InterEM
- Inter Prediction for Predictive Geometry Coding
 - Inter Prediction for Predictive Geometry Coding
 - Additional Predictor Candidate
 - Improved Inter Prediction Flag Coding

Low-Latency and Low-Complexity Dedicated Codec (LL-LC²)

LIDAR Predictive geometry

Non-uniform quantization of ϕ depending on *r*.

Better prediction and encoding of the residual for the (r, ϕ) pairs

LIDAR Inter-prediction contexts

- Inter Prediction for Octree Geometry Coding
 - From ping to ping
- Use Global Motion but separate road from objects
 - Objects move differently; road is mostly the same
- Two-Threshold Classification of point height

з

1 1

1

LL-LC² (low latency–low complexity)

Rotating LiDAR Coarse positions, then residues

Other topics

Motion estimation

- Point cloud blocks
- Fast search

Scalability and embedded coders

SPIHT for RAHT

Are these point clouds right?

Plenoptic Point Clouds

Surface specularity causes a change of appearance of a given object point at different viewing orientations, caused by illumination reflection.

We may be better off representing a plenoptic function to describe the light seen by viewers of any point at any direction.

Plenoptic Point Clouds

If we want to make voxels seen differently at different directions one options is to describe a continuous spherical function around the voxel. However, since all the information comes from observing the object from a fixed set of cameras, another alternative is to describe the camera colors for each voxel.

We have a list of colors per voxel per camera.

We end up with a list of data $(x,y,z) (r_0, g_0, b_0) (r_1, g_1, b_1) \dots (r_n, g_n, b_n)$

 We expect the view-dependent representation of the voxels to give an extra degree of realism to the rendering of the point cloud

Plenoptic enhancement differential encoder

- Only reflects the model characteristics.
- Lighting- and camera-independent.
- May represent glass, fog, mirrors, fish bowls etc.
- 7 attributes inspired in electromagnetic properties.
- At each voxel boundary, the renderer can calculate Snell and Fresnel.

	Min.	Meaning	Max.	Meaning
R_t	0.0	All red transmitted	1.0	All red reflected
G_t	0.0	All green transmitted	1.0	All green reflected
B_t	0.0	All blue transmitted	1.0	All blue reflected
R_a	0.0	No red attenuation	1.0	All red absorbed
G_a	0.0	No green attenuation	1.0	All green absorbed
B_a	0.0	No blue attenuation	1.0	All blue absorbed
D	0.0	Perfect specularity	1.0	Lambertian diffusion

Thank you

