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 Extending Visual Sensation through Image-Based Visual
Computing

* Visual computing at the intersection of
Computer graphics
*  Computer vision

* Media technology
 Algorithms on pixels from capture to display

 Immersive visualization, XR (VR, AR), light fields

Trinity College Dublin, The University of Dublin
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Outline

* Introduction to Visual Attention and Saliency
* Omnidirectional Video — 3DoF

* Volumetric Video — 6DoF

* Light Fields

°* Summary

Trinity College Dublin, The University of Dublin
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Visual Attention

Where people look when viewing a visual scene.

Trinity College Dublin, The University of Dublin ot \/_S E N S E



Visual Attention

Where people look when viewing a visual scene.
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Visual Attention
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Purpose Visual Attention and Saliency

* Understanding human perception
* Analysing/evaluating properties of the content

* Assigning resources to important parts of the content
* Coding/compression, streaming
* Rendering

* Quality assessment
* Optimizing algorithms driven by perceptual priority

Trinity College Dublin, The University of Dublin




Current Video Distribution
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* Legacy conversion
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Stretching:

Our solution:




Video Retargeting

Input stream

Saliency, edges, motion, scene cuts

Automatic content analysis

NG

e

x#ﬁ

‘.g -
o A

Postproduction constraints

Features, positions, lines, presets

Image warp

.

Feature sensitive, non-linear
(___ map to target resolution

EWA synthesis

Aliasing-free video
retargeting

Output stream

RS

A System for Retargeting of
Streaming Video

Philipp Krahenbuhl, Manuel Lang, Alexander Hornung, Markus Gross

SIGGRAPH ASIA 2009



Vintage Saliency Estimation

* Computational modelling of human visual perception

* Detectors of important visual features including:
* Faces, humans
* Text

Colour, texture, edges

* Forvideo: motion

* Etc.

* Handcrafted algorithms validated through comparison to
ground truth eye tracking data

Trinity College Dublin, The University of Dublin




State-of-the-Art Saliency Estimation

* Deep learning
(a) (b)

DeepGaze II: VGG features
ICF: ICF features readout network
Pixel: Raw pixel values (trained parameters)

/_/H

-

H/_/

fixed parameters

M. Kimmerer, T. S. Wallis, and M. Bethge, “DeepGaze II: Reading fixations from deep features trained on object recognition” arXiv preprintarXiv:1610.01563, 2016.

Trinity College Dublin, The University of Dublin ] Ca \/_S E N SE




ODV — 3DoF Interaction

Viewing characteristics: free look around in 3DoF

Equirectangular Projection

Trinity College Dublin, The University of Dublin




VV — 6DoF Interaction

Viewing characteristics: free look around in 6DoF

Trinity College Dublin, The University of Dublin ] o \/_S E N S E



eXtended Reality (XR) Content in 6DoF

Augmented and virtual reality experiences at V-SENSE

Augmented Reality Virtual Reality
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LFs — 6DoF Interaction and Refocusing

Trinity College Dublin, The University of Dublin
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Perception of Immersive Media

* User interaction poses novel challenges for understanding of
visual attention and saliency of immersive media

* Modelling of user behaviour becomes important

* Saliency models have to incorporate user interaction and
content properties

Trinity College Dublin, The University of Dublin
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Omnidirectional Images (ODIs) in VR

* Spherical captured images
* ODls are stored in a planar representation e.g., equirectangular, cylindrical, cubic
* Projected back into a 3D geometry for rendering

Trinity College Dublin, The University of Dublin




Visual Attention

Participant 1
360 VR Video / X-}’}:u-v- ‘ -

Individual visual attention
and fixation maps

-
[ |
Visual attention map I

Fig. Visual attention estimation.

«  Viewport center trajectories (VCTs)

\ S"‘ﬁ.’, e

Participant N

Abreu, Ana De; Ozcinar, Cagri; Smolic, Aljosa; “Look around you: saliency maps for omnidirectional images in VR applications,” 9th IEEE International
Conference on Quality of Multimedia Experience (QoMEX), 2017.

Ozcinar, Cagri; Smolic, Aljosa; “Visual Attention in Omnidirectional Video for Virtual Reality Applications,” 10th IEEE International Conference on Quality of
Multimedia Experience (QoMEX), 2018.

Trinity College Dublin, The University of Dublin




Visual Attention

Fig. A sample thumbnail frame with its estimated

visual attention for each ODV.

Abreu, Ana De; Ozcinar, Cagri; Smolic, Aljosa; “Look around you: saliency maps for omnidirectional images in VR applications,” 9th IEEE International
Conference on Quality of Multimedia Experience (QoMEX), 2017.

Ozcinar, Cagri; Smolic, Aljosa; “Visual Attention in Omnidirectional Video for Virtual Reality Applications,” 10th IEEE International Conference on Quality of
Multimedia Experience (QoMEX), 2018.

Trinity College Dublin, The University of Dublin
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Saliency Map




SalNet360

ﬁ SaINet360 u '—L ﬂ
ﬂ Final

saliency ma
Patches ymap

Patches
saliency maps

Trinity College Dublin, The University of Dublin




Modelling of Visual Attention

Traditional 2D

I:I Convolution

Pooling

Coordinates

Deconvolution .
saliency Refinement

Fig. Network architecture of the SalNet360.

Fig. Sliding frustum used to create
multiple patches.

* Monroy, Rafael; Lutz, Sebastian; Chalasani, Tejo; Smolic, Aljosa; “SalNet360: Saliency Maps for omni-directional images with CNN,” Signal Processing: Image
Communication, 2018.

Trinity College Dublin, The University of Dublin




Results

® Experiments with three scenarios
* Base CNN, Base CNN + Patches, Base CNN + Patches + Sph. Coordinates

Top: Image and Ground Truth

Bottom: Base CNN, Base CNN + Patches, Base CNN + Patches + Sph. Coordinates

Trinity College Dublin, The University of Dublin \/_S E N S E
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V-SENSE

Adaptive video streaming for VR video

The University of Dublin




Viewport-aware streaming

: - Encoding and
Source video o DASHify

HTTP
server

Representation
‘ Selection

Fig: Proposed viewport-aware adaptive streaming using tiles method.

e Ozcinar, Cagri; Abreu, Ana De; Smolic, Aljosa; “Viewport-aware adaptive 360° video streaming using tiles for virtual reality,” IEEE International Conference on
Image Processing (ICIP), 2017.

Trinity College Dublin, The University of Dublin




Viewport-aware streaming using tiles

8K ERP 360° video . .
- 360° ——» HTTP Server Transmitted Tiles G
o 5 - % e,
18lo E ..? ézl AI... @
* T Inside-viewport Bitrate
Tilin Representation
g DASH Segment A Selection
; encapsulation | E/ Sphere
, A L / H\F= (X,Y,2)"
? 2 | - Tiles ) ! r
oo ‘ o0 —p Encoding Viewport .
; DASH VR Player

An end-to-end streaming system implementation that contains tiling, an extension of MPD, and DASH
bitrate level selection in a viewport-aware way.

The proposed DASH player efficiently distributes the available bandwidth to tiles and requests the best
bitrate representation for each tile in a viewport-aware manner.

Trinity College Dublin, The University of Dublin

C. Ozcinar, A. De Abreu, A. Smolic, “Viewport-aware adaptive 360° video streaming using tiles for virtual reality”, i e \/_ S E N S E
2017 IEEE International Conference on Image Processing, Shanghai, China "



Optimal encoding ladders in Adaptive Streaming

Source Media Platform

. —| Planar Projection {=—t=+— Tiling > E nE‘:s;éTnztlﬁz c‘i:::; o — Encoding

= / / / '
A
i —»W&kﬁk‘“ﬁ“"—»hé\dﬁhhiﬁ MQ
' * Ty 20 L \ 4 Edge Servers
- \ I’ ! Packaging  {—+r——>p n")’)) Origin Server
Spherical Video 8K ERP Video Tiled 8K ERP midfiff=r L0 ! mj
Video |

__________________________________________________________________________________________________________________________________

Cost-optimal encoding ladders is estimated in order to reduce storage capacity utilization and computational costs of

CDN.
The method targets both the provider’s and client’s perspectives and introduces a technique for content-aware encoding

ladder estimation of 360-degree video in adaptive streaming systems.

e Ozcinar, Cagri; Abreu, Ana De; Knorr, Sebastian; Smolic, Aljosa; “Estimation of optimal encoding ladders for tiled 360° VR video in adaptive streaming systems,”
19th IEEE International Symposium on Multimedia (ISM), 2017.

Trinity College Dublin, The University of Dublin




Visual Attention-Driven Dynamic Tiling

Storage @ HTTP Server f—=
o cose

HTTP segment
Tiling and Optimization of . ey | DASH VR
Encoding > Tile Scheme > Packing > Internet  —— Player
T HTTP request +
. Dataset

360° video I 7 )
capturing Planar Projection 'Estlmatlon ?f i .‘ HMD
Visual Attention Map | ViSual Attention 7

Fig: Schematic diagram of the proposed adaptive 360 VR video streaming system

- Polar tile

Polar tile

"Equatorlal t|Ie- --) ! -> I!!I

Fig: The used tiling scheme with its different structure
* Ozcinar, Cagri; Cabrera, Julian; Smolic, Aljosa; “Omnidirectional Video Streaming Using Visual Attention-Driven Dynamic Tiling for VR,” IEEE International
Conference on Visual Communications and Image Processing (VCIP), 2018
* Ozcinar, Cagri; Cabrera, Julian; Smolic, Aljosa; “Viewport-aware omnidirectional video streaming using visual attention and dynamic tiles,” 7th European
Workshop on Visual Information Processing (EUVIP), 2018
Trinity College Dublin, The University of Dublin
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VI-VA-METRIC: Omnidirectional Video Quality
Assessment based on Voronoi Patches and Visual

Attention

Simone Croci, Emin Zerman, and Aljosa Smolic




Unique Aspects of ODV

1. Spherical nature but stored in planar representations

Trinity College Dublin, The University of Dublin



Unique Aspects of ODV

2. Viewing characteristics: free look around, only viewport

Visual Attention

Trinity College Dublin, The University of Dublin | e, \/_S E N S E



Voronoi Patch Extraction

Trinity College Dublin, The University of Dublin




Voronoi Patch Extraction
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1) N evenly distributed points P; = (X;, Y;, Z;)
withi=0..N—-1
o = AT - <3 — \/g)

1 21
- (-3) (-2
& = \J1-2?

X; = d;-cos(ay)
Yi = d;-sin(a;)
2) Spherical Voronoi Diagram
=> spherical patch II;
3) Planar patch IT'; corresponding to the
spherical patch II;
4) Pixels of planar patch IT'; by sampling
ODV in ERP




Voronoi-based Metrics

Distorted
Patch Scores S;
Voronoi 2D Video
»  Patch | Metrics
Subdivision
4 PSNR, SSIM,
MS-SSIM, VMAF,
N
Arithmetic lz S
l Mean N l
i=1
Spherical Voronoi VI-PSNR, VI-SSIM, v
Diagram VI-MS-SSIM, VI-VMAF,

[ Final Score J

Trinity College Dublin, The University of Dublin




PSNR

VI-VA-METRIC Framework oI

MS-SSIM
VMAF

Spherical th
Take k' patch ?h erica ™ Path
k" patch
Y

—~\ -
S

Projection to plane

o

Q

=

o
Distorted

Metric result
for k" patch
of it" frame

[k

Reference

Trinity College Dublin, The University of Dublin




VI-VA-METRIC Framework

Score of frame i:

k=1 Tk
= l,’
li==—"7" Ik Patch score

Vik Visual attention weight

4: 63.19

7: 38.23

10: 41.27 gy

19: 3815 |l AE

R4 14: 66.30

15:735.43 16: 72.53

17: 64.99
18: 40.61

19: 75.40

Trinity College Dublin, The University of Dublin 7 v ‘g \/_S E N S E



VI-VA-METRIC Framework

Score of frame i:

T; = T I, Patch score

)

Vik Visual attention weight

Trinity College Dublin, The University of Dublin




VI-VA-METRIC Framework

Final score from temporal pooling of frame scores

VI-METRIC = P(T;, Ty, ..., Ty)
VI-VA-METRIC = P(T/, T4, ..., T},

P: arithmetic mean, harmonic mean, min, median, p-th percentile, ...

Trinity College Dublin, The University of Dublin




ODV Dataset and Subjective Experiments

- Goal: metric evaluation

- ODV Dataset
- 8 reference and 120 distorted ODVs

- Scaling and compression distortions

- Subjective Experiments

- Subjective scores (DMOS) and visual attention data

Trinity College Dublin, The University of Dublin




ODV Dataset

(e) KiteFlite

Trinity College Dublin, The University of Dublin

(f) Gaslamp

8K x 4K ERP

YUV420p
10 sec.

(g) SkateboardTrick

(h) Trolley




Metrics PLCC SROCC RMSE MAE
PSNREerp 0.8408 08237 82326 6.3169
PENRanis 0.8480  0.8323  8.0419  6.2085
S-PSNR-I 0.8580  0.8438  7.8207 5.9715
S-PSNR-NN 0.8584  0.8433  7.8066  5.0648
WS-PSNR 0.8582  0.8430 7.8107 5.9772
CPP-PSNR 0.8579  0.8439  7.8200 5.9779
SSIMEzRp 0.7659  0.7551  9.7734  7.7396
SSTM s p 0.7701  0.7546  9.6583  7.6036
MS-SSIM 5z p 0.0224 09160 5.8232  4.4205
MS-SSIM ¢y p 0.9132  0.9081  6.1422  4.7378
VMAF grp 0.8978  0.8864  6.7433  5.3631
VMATY G 0.9063  0.8945  6.5630  5.2229
VI-PSNR 0.8676  0.8551  7.5743  5.8377
VI-SSIM 0.8823 08763 7.1172  5.2867
VI-MS-SSIM 0.9486  0.9450  4.8743  3.8475
VI-VMAF 0.9646  0.9581  4.2096  3.1548
VI-VA-PSNR 0.8876 08712  7.1818 5.5072
VI-VA-SSIM 0.9106  0.9007  6.4345  4.8097
ooy V1-VA-MS-SSIM | 0.9676  0.9635  3.8082  3.1526
8 VI_VA-VMAF | 0.9773 0.9717 3.3753 2.5948



Findings

- VI-METRICs better than original metrics

- Low projection distortion of Voronoi patches

- VI-VA-METRICs better than VI-METRICs

- Visual attention is important

- Best: VI-VA-VMAF

Croci, Simone; Ozcinar, Cagri; Zerman, Emin; Knorr, Sebastian; Cabrera, Julian; Smolic, Aljosa
Visual Attention-Aware Quality Estimation Framework for Omnidirectional Video using Spherical Voronoi Diagram Journal Article
In: Springer Quality and User Experience, 2020.

ISO/IEC JTC 1/SC 29/AG 5 N00013
Draft Overview of Quality Metrics and Methodologies for Immersive Visual Media (v2)

Trinity College Dublin, The University of Dublin (] o \/_S E N S E
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SUBJECTIVE EXPERIMENTS INSAZ:

APPLIQUEES
RENNES

» Testbed: Records participants’ viewport center tragectories
(VCTs) in mute, mono, ambisonics

1. Materials: Monoscopic ODV, First order ambisonics (4 channel: WXYZ)
2. Equipements: Oculus Rift, Bose QuietComfort noise-canceling headphones
3. Softwares: three JavaScript libraries:

a) (1) three,js, (2) WebXR: enable the creation of fully immersive ODV experiences in a web
browser

b) (3) JSAmbisonics: nonindividual head-related transfer functions based on spatially oriented
format for acoustics

4. Eact WW {mute, mono, émbisoniCS} A
X pefgieman . Audio \
Y reheeeman ; ' »

ziEl
VR
f e &
udio !
< viewport
/wewport
Scene objects location
@ —> Texture ° Gkl

Geometry

180°
Dy, e —



SUBJECTIVE EXPERIMENTS

Materials: 3 training ODVs and 12 test ODVs in 3 audio modalities

INSTITUT NATIONAL

‘ DES SCIENCES
APPLIQUEES
RENNES

— - e
Phem,, - N Tl e .
Table 1: Description of the ODVs in our dataset. R Part|C| pa nts .
Dataset ODV Fps YouTube Selected
D Name ID Segment
Z | Train VoiceComic 24 5h95uTtPeck 00:30:10 — 00:55:10
= 01 TelephoneTech | 30 idLVnagjl_s 00:32:00 — 00:57:00
£ 02 Interview 50 | ey9J7w98wil | 02:21:20 —02:40:10
z 03 GymClass 30 | kZB3KMhqgyl | 00:50:00 - 01:15:00
S 04 CoronationDay | 25 MzcdEI-tSUc | 09:10:00 — 09:35:00
Train Chiaras 30 Bvu9m_ZX60 | 00:12:15-00:37:15
Y 05 Philarmonic 25 8ESEIObqrJ4 | 00:40:00 —01:05:00 a—— — VAR —
z 06 GospelChoir | 25 | 1An41IDIJ6Q | 00:09:10 — 00:34:10 . . & .
= 07 Riptide 60 | 6QUCALVQ3I | 00:00:00—-00:25:00 | Fig. 2: Examples for each ODV used in subjective experiments.
08 BigBellTemple | 30 | 8feSIrNYEbg | 02:54:26-03:19:26 | Rows from top to bottom respectively belong to category: Conver- o
= [ Train Skatepark 30 | 2SueCRQOSg | 00:00:00—00:25:00 | sation: Music: Environment. These participants were
£ 09 Train 30 | ByBFOS8H-wDA | 00:20:10 - 00:45:10 aged between 21 and 40
B 10 Animation 30 | fryDy9Ycbl4 | 00:01:00 —00:26:00 years old with an average
: 11 BusyStreets 30 RbgxpagCY ¢ 02:16:18 — 02:39:20 IR of 27.3 years old
s 12 BigBang 25 | dd3%herpgXA | 00:00:00 — 00:25:00 100 1
= 0 16 of them were female. 8
% oLl | of them were familiar with
§ 04 o2 VR, and the others were
b= naive viewers.
5 60 +06
g $01 03
£ ¥ e All were screened and
L | 208 reported normal or
e o corrected-to-normal visual
AN L N I S S — and audio acuity,
102 104 106 108 110 112 114 116

Spatial Index (SI)

Fig. 3: SIand TI [19,20] for each ODV used in subjective exper-
iments. Each color visualizes each category: Conversation; Mu-

sic; Environment.

24 participants wore
glasses during the
experiment.




USER BEHAVIOR ANALYSIS

« Analysis1: Do audio source locations attract attention of users?

* Normalized Scanpath Saliency (NSS) of fixations falling in sound source area
* A higher NSS score indicates more fixations are attracted to areas of audio source locations

with audio energy map (AEM)

* negative NSS scores indicate most fixations are not corresponding to areas of audio source
locations.

—_— e

15

NSS score
o

0.
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o ez e e
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2.0

1.01
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Z—3 mute [0 mono [ ambisonics

):I:)]i
A
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e

01 02 03 04

05 06 07 08
ID of ODVs

Fig. 4: Mean and 95% confidence interval of Normalized Scan-
path Saliency (NSS) of fixations falling in sound sources areas under
e mbicomies — c) ambisonics three audio modalities. ** marks statistically significant difference
ODV 06 oDV 11 (SSD) between two modalities.

09 10 11 12

Fig. 4 shows that users may tend to follow audio stimuli (especially human voice) in categories conversation

and music while they tend to look around in general regardless of the background sound in category
environment.




APPLIQUEES
RENNES

USER BEHAVIOR ANALYSIS INSAZ:

» Analysis3: Does sound affect observers’ navigation?
* Fig.6 shows fixation distributions of all observers overlaying on AEM and ODV frames in a second

a) mute

-
TR

ambisonics C) ambisonics °) ambisonics Tambisonies — c) ambisonics c) ambisonics
ODV 02 ODV 04 ODV 05 ODV 06 ODV 10 ODV 11
Fig. 6: A sample thumbnail frame with its AEM and fixations for each ODV, where the red represents AEM and the orange, blue, and pink

denotes fixations recorded under none, mono, and ambisonics modality, respectively. A frame for each ODV ID from left to right: 02, 04, 06,
08, 09, and 10.

* |In most of the cases as shown in Fig. 6, the distribution of fixations for the ODVs with ambisonics modality is more
concentrated.
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ONAL VIDEO WITH SPATIAL AUDIO
T

ng-Yi Chao, 2Cagri Ozcinar, 'Lu Zhang, 'Wassim Hamidouche, 'Olivier Deforges, ?Aljosa Smolic -

niv Rennes, INSA Rennes, CNRS, IETR - UMR 6164, F-35000 Rennes, France
2\-SENSE, School of Computer Science and Statistics, Trinity College Dublin, Ireland

Presented by Fang-Yi CHAO, Date: 03/12/2020 on VCIP
Code available: https://github.com/FannyChao/AVS360-audiovisual-saliency-360
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RELATED WORKS INSA &

W s e {mute, mono, ambisonics}
X pepiemar . Audio :l. .\

VR .
fndor 5

=> This is the only existing dataset investigating the impact of audio
stimuli to visual attention

: e " h lucauon
o—‘ B _J l\ Sphere ﬂ

=> We propose the first audio-visual saliency model AVS360 to
consider the impact of spatial audio

» Chao et al. [1] proposed 360AV-HM dataset recording visual attention in mute, mono,
ambisonic modalities

%

N
>

Multi-channel
Andin

» They show that different audio-visual contents (i.e., conversation, music, and environmen
of ODVs and different audio modalities (i.e., mute, mono, and ambisonics) have a differe
interactive effect on human visual saliency.

[1] F. Chao et al., “Audio-visual perception of omnidirectional video for virtual reality applications,” In 2020 IEEE International
‘ce on Multimedia Expo Workshops (ICMEW), July 2020.
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Network architecture

Equator center bias (ECB)

=
2 cube padding (CP) .

=
2
: © c
3D ResNet with CP % >| [ g —>
Wosebemn e 0 -3
X Sl —— 3
Y > HeH > - - > —>
Multi-channel Log mel eimsiss in :
Audio spectrogram ooy I Conv ix1 i ’
I )  — 2x Upsample + Cube padding [2]
) Conv 3x3 + RelLU}

audio energy map (AEM)

[2] H.-T. Cheng et al., “Cube padding for weakly-supervised saliency prediction in 360 videos,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018.

B




INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES

RENNES

» Contribution of each component in our model in all categories

mute mono ambisonics
Cat.  Models NSS CC NSS CcC NSS CC
o 2stream o/w CP 206 038 226 039 228 040
= 2stream 222 041 244 042 246 043
g 2stream+ECB 231 042 251 044 247 044
" 2stream o/w CP 224 040 256 041 2.37 0.38
L 2stream 228 041 273 045 242 0.39
Loc) 2stream+ECB 241 044 282 045 240 0.4
2stream o/w CP 219 040 222 038 224 040
= 2stream 230 042 237 039 242 046
§ 2stream+ECB 244 043 240 0.40 w Q.44
2stream+ECB+AEM ~ 2.53  0.45 E.' 0.42 2.68 0.47 l
o 2stream o/w CP 1574 1034 21000 037 221 0.41
e 2stream 203 040 226 042 256 044
'g 2stream+ECB 207 039 231 042 259 0.46
43}

2stream+ECB+AEM  2.16 041 237 043  2.62 0.47

Mean values for saliency prediction accuracy of each component in our
AVS360 model evaluated with the 360AV-HM dataset. (best in bold in
each content category and audio modality)).

B
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RESULTS INSA| &

« Comparison to the state of the arts

mute mono ambisonics

Cat.  Models NSS CC NSS CC NSS CC

SalNet360 [12] 149 029 155 028 147 0.26

SalGAN360 [77] 158 031 1.65 030 1.60 0.30

CP360 [ 5] .16 024 119 023 116 0.22

MMS [17] 1:24. 025 139 025 1:35 025
()

AVS360 (Ours)

SalGAN360 [11] 186 036 194 033 177 031
CP360 [%] 120 024 125 022 119 022
MMS [13] 153 030 191 033 170 030

Conver.

AVS360 (Ours)

SalGAN360 [11] 155 029 152 029 153 028
CP360 [5] 115 023 114 022 114 022

099 0.19 09 0.17 1.03 0.20
VE [7] 167 032 166 030 103 01364

AVS360 (Ours)

Music
=
=
(5]
oan
~~

SalGAN360 [11] 133 029 147 029 151 030
CP360 [5] 112 024 117 023 118 023
MMS [13] 118 024 130 026 130 025

Environ.

AVS360 (Ours)

Mean values for saliency prediction accuracy of the state-of-the-art

models evaluated with the dataset 360AV-HM (best in bold in each
Ndio modality and content category).
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Category Conversion:
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EXAMPLES

Category Music:

Frame £10 AEM mute ambisonic
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EXAMPLES

Category Environment

Frame #12

AVS360

11E: BusyStreets
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Introduction

Mapping

______

|z user
=7 viewport

A

J-th frame

* Viewport-based adaptive streaming [8], which streams only the user’s viewport of interest with high quality and
streams the rest part with lower quality, has emerged as the primary technique to save bandwidth over the best-
effort Internet.

* Thus, users’ viewport prediction in the forthcoming seconds becomes an essential task for informing the streaming
decisions in the VR system.

* Ourgoal is to predict a viewer’s viewport center trajectory (i.e., scanpath) in the following F' seconds given the
user’s historical viewport center trajectory in the previous H seconds.

Trinity College Dublin, The University of Dublin | Conege \/_S E N S E



Problem formulation

«  Wedefine {P;}1_, as a viewport scanpath of a viewer
consuming a 360° video in duration T.

* It can be represented in

@ Viewport center
B Sample point Polar coordinates {P; = [0;, :]} =
. Historical where [-T <0 <m,—7m/2 < ¢ <7/2]

viewport scanpath

: }“»sfgigéidscanpmh Cartesian coordinates {P, = [x;, V¢, Z¢ ]} =0
where[-1<x <1, -1<y<1-1<z<1].

e _»Ground truth
viewport scanpath

R * Let F denote output prediction window length and H

>

Video display time t denote input historical window length.

* Inevery time stamp t, the model predicts the future
viewport scanpath, P, ., for all prediction steps s €
[1, F] with the given historical information P;_j, for all
past steps h € [0, H].

Trinity College Dublin, The University of Dublin ot \/_S E N S E



Problem formulation

@ Viewport center

O Sample point

Historical
viewport scanpath

,' \ _»Predicted
viewport scanpath

e
‘ -> Qromd truth
viewport scanpath

>
>

Video display time t

+F

t= tcurrent

Trinity College Dublin, The University of Dublin

We can formalize the problem as finding the best
model f5 :

fr = argmin E;[D(fe{P:}t=—p {P:}iZt41)] (1)

where D(-) measures the geometric distance between
the predicted viewport center positions and
corresponding ground truth in each time step s, and E;
computes the average distance of every prediction step
inintervalt € [t + 1,t + F].




Related work

TABLE I: Taxonomy of existing viewport prediction methods

# of Model Prediction Window

Cat. Method Input Output Algorithm Parameters Length
ClisiEiing Petrangeli_AIVRIS [!] Past scanpath Head Coordinates  Spectral Clustering Algorithm / 10s
i Taghavi_NOSSDAV20 [2] Past scanpath Head Coordinates Clustering / 10s

Xu_PAMIIS [7] Past scanpath + Video Frame Head Coordinates CNN, LSTM, RL 34.00M 30ms (1 frame)
Nguyen_MMI8 [1] Past scanpath + Saliency map Viewport Map LST™M 58.48M (saliency map) 2.5s
+ 0.36M (scanpath)
Deep-learning Wu_AAAI20 [5] Past scanpath + Past Viewport Frames Viewport Map Spherical CNN, RNN 128.87M 8s
+ Future Video Frames

Romero_PAMI21 [6] Past scanpath + Saliency Map Head Coordinates LST™M 172.5TM 5s
Ours Past scanpath Head Coordinates Transformer 6.3M 5s

* Clustering-based methods:
* Pros: Have relatively less computation.

e Cons: The clusters of every video are content-

* Deep-learning-based methods:

dependant. It requires collecting viewing trajectories .

from multiple users for any 360° video.

Trinity College Dublin, The University of Dublin

Pros: Can directly be applied to any 360° video using
the trained model.

Cons: Their complex architectures, which have many
learnable parameters in the models, require heavy
computation and lead to high latency in the
streaming system.




Method: Transformer-based VPT360

stk * Our transformer-based model uses only the viewport
P g e < scanpath without requiring any other content information
Multi-Head Attention \ { Scaled Dot-Product N A .
L Attention | (e.g., video frames, saliency maps, etc.) to reduce the
P : computational cost and attain superior results compared to
e L () | e P P
i E [ i existing metnodads.
SRl Skt W =] i * Unlike RNN, which processes sequential data in order,
Pl 1 . .
il fl (AN (scate | 5 transformers simultaneously take account of multiple
z z 3 N 1 . . . .
[“"fa’ | “"fa' ) ““fa'] i Cwawa] | elements in the input sequence and attribute different
AR L l 7 weights to model the impacts between each element.
input N e £ KOS RO /
. * This architecture achieves better long-term dependency
(b) (c) modeling and larger-batch parallel training compared to
: . . RNNs.
Architecture of our Multi-Head Attention  Scaled Dot-Product
transformer-based VPT360 Module Attention

model

Trinity College Dublin, The University of Dublin




Proposed method

Input embedding:

output sequence

Vs S N e @ The transformer block shown in Fig. (a) processes a set of
scanpath embeddings {e;}:_,_ as input, and output a set

Attention

[ tinear | L (e ) of updated embeddings {e;}{_,_j; with temporal
[ dependencies.
Scaled Dot-Product i i

* We can create the query, key, and value matrices Q €
dedeodel , K € dedeodel , Ve RdVdeodel respectively’

ﬂ Atteﬁtion ﬂ e ,E——’ m

[ Linear ][ Linear ][ Linear ] ?‘\\ m
1
|
)

i i i N from the given input sequence with the functions:
v K a / i\ Q K v ¢ ¢

input B et B 2 . — — t

0=rfo(le).,) K =re(le),y) V= Fredic) @
(& .
(®) ©) where f,, fx and f,, are the corresponding query, key and
0 Jk %4
Architecture of our Multi-Head Attention  Scaled Dot-Product ; PRANE ; ;
cranstormer-based VPT360 Nl Atontion value functions which linearly project the input sequence.

model

Trinity College Dublin, The University of Dublin




Proposed method

output sequence

Position-wise

s
/

Bl ‘ Scaled Dot-Product
Multi-Head \——" Attention

Attention Y fl fl il
1 J \\ [ Linear ][ Linear ][ Linear ]

- T

\ Vv K Q
input [l (O SSSSTSESEEEER oo

sequence
(b)

Architecture of our
transformer-based VPT360
model

Module

Trinity College Dublin, The University of Dublin

Multi-Head Attention

_______________

Scaled Dot-Product
Attention

|

N
\

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
1
1

_______________

(c)

Attention

Position embedding:

Since there is no recurrent unit in transformer layer to
capture temporal features, we exploit positional embedding
to infuse the relative or absolute position information of the
elements in the input sequence.

We use the summation of input sequence with sine and
cosine functions [9] of different frequencies:
PE(pos, 2i) = sin( L ) (3)
10000%model
PE(pos,2i+1) = cos( (4)

pos
10000%model

where pos denotes the position and i denotes the dimension.

This sinusoidal function allows the model to attend by relative
Scaled Dot-Product POsitions easily.

We also tried the learnable position embedding as used in
[10], but found that this led to worse performance in our
case. We analyze the effect of the position embedding in




Proposed method

output sequence

Position-wise
Feed Forward
q Add & Norm

_______________

Scaled Dot-Product
Attention

s
/

(wawar |
|

(R ————

_______________

N
\

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
1
1

Nx 3 ‘ Scaled Dot-Product h
Multi-Head | AF~~ atEnton -
Attention X fl il i\
e \ [ Linear ][ Linear ][ Linear ?‘\
S— vy T
= Position embedding '\\ v K Q /‘
e o inputenbesang ] T
sequence [
L]
(a) (b)
Architecture of our Multi-Head Attention
transformer-based VPT360 Module

model

Trinity College Dublin, The University of Dublin

Attention

Scaled Dot-Product

Scaled Dot-Product Attention

* The attention weights between each element can be
calculated with the scaled dot-product attention defined as:

Att(Q, K, V) = softmax (Q—KT) v (5)

N
* It can be regarded as the matrix V multiply with the weights
calculated by the matrix Q and K.

* The weights are defined by how each element of the
sequence Q@ is influenced by all the other elements in the
sequence K.

* the softmax function normalizes the weights to yield a
distribution between 0 and 1. Those weights are then applied
to all the elements in the sequence in V.

* The scale factor /dj is to avoid overly large values of the
inner product, especially when the dimensionality is high.




Proposed method

output sequence

I I I I [ ]

/ N | ¢ scaled Dot-Product

f | E Attention !

i 1k i

1 . 1 :

| | =]

1

Eesironends) | || 1k [

1 1 1

I | H \

[ | 1
Nx Aad & Noem 1 [ Scaled Dot-Product hi E m ! °

Multi-Head A1 Attention S :

Rl T 1 7| &9 |

> > = 5 A N 1

B . [ Linear ][ Linear ][ Linear i m :

o v I i A !

& )
Position embedding \\\ v K Q /, .\ Q K v ’;
input - ST SCEOSSERERIOESD 4
sequence Input embedding
(a) (b) (c)

Architecture of our Multi-Head Attention  Scaled Dot-Product

transformer-based VPT360 Module Attention °

model

Trinity College Dublin, The University of Dublin

Multi-Head Self-Attention Module:

The attention mechanism, can be repeated multiple times
with linear projections of Q, K, and V.

This multi-head attention benefits the model to learn from
different representations of Q, K, and V by jointly attending
to information from different representation subspaces at
other positions.

These linear representations are done by multiplying Q, K,
and V by weight matrices W<, WX, WV that are learned
during the training process.

MultiHead(Q, K, V) = Concat([head]-,|)W?° (6)

where head; = Att(QW,°, KW/, vw}") (7)

The projections are parameter matrices WiQ € R%moaerXdy
VViK € RdmodeLXdk' VViV (= Rdmodelek’ and VViO € thdemodel_




P ro p ose d m et h O d Position-wise Feed-Forward Network

* After self-attention sub-layers aggregate all input
embeddings with adaptive weights, each layer contains a
fully connected feed-forward network to consider
R, interactions between different dimensions.

output sequence

Linear 7
Attention

S0 B Noe * |t consists of two linear transformations with a ReLU

{ o
Position-wise E i E m . . . . . iy
Feed Forward 5 Lo [ activation in between and is applied to each position
N x J | [ Scaled Dot-Product hi |

Multi-Head

! Attentlon Y -
< e G

(wask ) separately and identically.

Attention g —
Ltt : Lmear Lmear ][ Linear] :’\\ m FFN('X) ReLU(le + bl)WZ + b2 (8)
\:\ K CII /E \E‘\ L l i e where ]/|/1 (= Rdmodelx‘l’dmodel' W2 (= Rdmodelx‘l'dmodel’ bl (=

-------------------- e R*dmodel and b, € R*?model gre learnable weights and
shared across all positions.

input
sequence

(b) (c)
. . : .
Architecture of our Multi-Head Attention  Scaled Dot-Product Note tha-t while the.Il'near transformaﬁons are the same
transformer-based VPT360 Module Attention across different positions, they use different weights in
model different layers.

Trinity College Dublin, The University of Dublin




Proposed method

VPT360
output sequence * Our transformer employs N = 1 layer encoder with h = 8
___________________________________ multi-head attention

N
\

Scaled Dot-Product

i i E Attention ‘:
i P i d
; =g \ (wew) | * Modellength dinoger = 512, where dj, = d,, = =24 = 64
Position-wise ' ! i . .
Feed Forward [ following the vanilla transformer [9].
N x E { Scaled Dot-Product ‘ h E m i
Multi-Head ot Attention ] #J——‘ ]
[ A:tention N i 1 i\ m i
A S N\ [ Linear ][ Linear ][ Linear ] N m i
b T i
\ Vv / :

& > V!
input Pl (Geeeeeceesemmm $20900 - ———————————————"" B 2
sequence
(b) (c)
Architecture of our Multi-Head Attention Scaled Dot-Product
transformer-based VPT360 Module Attention

model

Trinity College Dublin, The University of Dublin




Combination Loss Function

Proposed method

* Qur loss function is then defined as the combination of
position MSE and motion velocity MSE as:

output sequence

=

- N g
Linear !

L =aMSE(P,P) + BMSE(V,V) (9)

N

Scaled Dot-Product
Attention

i - :
E D) Lo . where V denotes the motion velocity in predicted position P,
Position wise | Lo (i | i and V denotes the motion velocity in ground truth position P.
: » [
Nx | (" scoeapotrronu )| | (Ve i * The motion velocity V is the root mean square value of the
- 7 A"eﬁt"’" o (o] ; position in current moment and the position in the last
P \\\ [ Linear ][ Linear ][ Linear ] ?‘\\ m i moment’ Where
p— R R A T I I
‘\\ Vv K Q /,’ '\\ Q K V ,; _
input B GrmmmEmmmemm) 20 O C-————————m——m———” Rl 4 V — \/(Pt - Pt_l)z
sequence
— — 2 _ 2 _ 2
(b) (©) = (xr = %12+ (Ve = ¥e-1)?+ (2 — 21)% (10)
Architecture of our Multi-Head Attention  Scaled Dot-Product
transformer-based VPT360 Module Attention The hyper-parameters a and (8 are used to balance the

model scale of two loss components. We set (a, 8) = (0.75,0.25)
by experiments.

Trinity College Dublin, The University of Dublin Y| Conene \/_S E N S E



Experiments

Settings:

* We use Cartesian coordinates (i.e., x, y, z) rather than
Polar coordinates (i.e., 8, ¢) to represent viewport
position since the former retains continuous between
+1inx, y, zdimensions on the sphere, while the latter
has a periodic issue which -t =t in 6 coordinate.

*  We set the input historical window length H = 1
second and output prediction window length F = 5
seconds since the professional streaming systems (e.g.,
Facebook) download video segments at least 5
seconds before the playout time [14].

* The sample rate is 25 elements per second, implying
that the model inputs a 25-element sequence and
outputs a 125- element sequence.

Trinity College Dublin, The University of Dublin

Dataset:

TABLE II: Main characteristics of three datasets containing
scanpaths collected with HTC Vive HMD in 360° video. HM
and EF denote Head Movement and Eye Fixation, respectively.

Viewer  Video Video Video  Ground truth
Dataset # # Length Size Annotation
Wu_MMSys17 [11] 48 9 2-10 min. 2k HM
Xu_PAMIIS [7] 58 76 10-80 sec.  3k-8k HM / EF
David_MMSys18 [17] 57 19 20 sec. 4k HM / EF

s Wu_MMSys17
Xu_PAMI18
e David_MMSys18

100 150 200 250 300
Accumulated angular motion (degree)

0 50

Fig. 3: Histogram of accumulative angular motion in every
5-second scanpath in three datasets. Accumulated angular
motion is the summation of absolute head rotation angle in
a given scanpath.




Experiments

Three Evaluation Metrics: Baseline:

’ tAk\lleeﬁrge?:lﬁ:rtee?:It ;;rlﬂ,ceg'Sta?ge (;h§ gésc;cagnrgidbfrt::ﬁepr:)mt * No-prediction method: the repetition of the last element
t t ¥t . .
P, = (6,, $,) on a sphere. The lower value indicates in the input scanpath as an output scanpath.
the higher prediction accuracy.

* Mean overlap: the average overlap ratio of
intersection over the union between predicted and
ground truth viewport area in a given prediction
window. The higher value indicates the higher
prediction accuracy.

* The average ratio of overlapping tiles measures
accuracy in terms of the percentage of overlapping
tiles between predicted and ground truth viewports.
We follow Nguyen_MM18 [4] to set (9, 16) tilesin a
frame. The higher value indicates the higher prediction
accuracy.

* The FoV size is set to 100° .

Trinity College Dublin, The University of Dublin




Experiments

Ablation study TABLE III: Quantitative results of the ablation study. All the
scores are shown in average great circle distance (in rad.) from
15t row: The impact of sinusoidal/learnable positional the 1%¢ to the 5" second, which the lower value indicates the
embedding (denoted SPE/LPE) and combination loss function better prediction accuracy. The best scores are shown in bold.
(denoted Ly,s and Lyossvel). From the results, we can see that gy “gndiy, Bedlg g B g
sinusoidal outperforms learnable positional embedding in all SPE. Fio
- SPE, Lpos+vel
5-second sequences. LPE. Lo
LPE, Lp05+vcl
» 2" row: The results of different input historical window input window H=0.5s 0219 0.638 0959 1.176 1.329
lengths. It shows that the shorter window length leads to input Wir:ldow ;l=ll-gs 8-5?3 g-g% g-gg‘; :-?Zf };g?
R - input window H=1.5s ; : B : :
better short-term prediction but worse long-term prediction. input window H=2.0s 0307 0706 0988 1170 1272
We set the window I.ength to 1 second as it achieves the best Enc 1 layer 0239 0637 0934 L1095 1139
results most of the time. Enc 2 layers 0258 0652 0920 1.095 1.191
Enc 3 layers 0283 0673 0945 1125 1210
3 row: The effects of different transformer encoder 8“'5 S\;’Eé Lpols+lvel) g-ggg g-ggg ‘l’-gg‘l‘ :-‘;32 };39]‘
. . urs, , Enc 1 layer b s ] : .
(denoted Enc) layers. We discover that, in our work, only Ours, SM, Enc 2 layers 0313 0752 1056 1247 1362
using one-layer encoder performs satisfactorily. More layers Ours, SM, Enc 3 layers  0.278 0850  1.279  1.506  1.604

of encoder do not improve the results.

Trinity College Dublin, The University of Dublin




Experiments

Ablation study TABLE III: Quantitative results of the ablation study. All the

scores are shown in average great circle distance (in rad.) from

* Referring to other existing methods using saliency maps to the 1%¢ to the 5" second, which the lower value indicates the

improve the prediction, we integrate ground truth saliency better prediction accuracy. The best scores are shown in bold.
maps of future frames to see if it contributes to better gk gl gndl gt B g
prediction. SPE, Lpos 0269 0668 0952 1117 1.191
SPES Vi 0239 0.637 0934 1.095 1.139
*  We use the method proposed in Romero_PAMI21 [6] to flatten tﬁﬁj Iﬂ:“cl 8;23‘1‘ 81332 :jg?g 13133 }333
the saliency maps of the next frame into one dimension and input window H=0.5s 0219 0638 0959 1.176 1329
concatenate it with position embedded input sequence. We input window H=1.0s ~ 0.239  0.637 0.934 1.095 1.139

. input window H=15s 0319 0700 0965 1.141 1.5
then use the transformer encoder to encode the concatenation {10\ window H-20s 0307 0706 0988 1170 1272

of position embedded sequence and flattened saliency map.

Enc 1 layer 0239 0.637 0934 1.095 1.139
Enc 2 layers 0258 0652 0920 1.095 1.191
* 4% row: The results of integrating ground truth saliency maps puc g luyens DS G o e Rl
(denoted SM) with encoders in a different number of layers. We | Ours (SPE, Lyosivel)
. . . Ours, SM, Enc 1 layer
can see that the performance is not improved by simply Ours, SM, Enc 2 layers
combining the saliency maps. A better integration method is Ours, SM, Enc 3 layers
required.

Trinity College Dublin, The University of Dublin
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Comparison with the state of the arts S £
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o 9 —8— VPT360 (Ours)
2 < —¥— Taghavi_NOSSDAV20
021 —— VPT360 (Ours) 051 —a— No-prediction baseline
Romero_PAMI21 “— Romero_PAMI21
—-= No-prediction baseline —#— Nguyen_MM18
0.0 4
0 1 2 3 4 5 0.5 1.0 15 2.0 25
Prediction step s (sec.) Prediction window length (sec.)

(a)
Fig. 4: Comparison results on (a) David_MMSys18 and (b)
Wu_MMSys17 dataset, respectively.

TABLE IV: Comparison with Xu_PAMI18: Mean Overlap scores of FoV prediction, prediction window length F ~ 30ms (1
frame). The best score is shown in bold and the second-best score is shown in underline.

Method KingKong  SpaceWar2  SwarryPolar Dancing  Guitar BTSRun  InsideCar  RioOlympics  SpaceWar CMLauncher2  Waterfall  Sunset  BlueWorld  Symphony  WaitingForLove — Average
Xu_PAMIIS [7] 0.809 0.763 0549 0.859 0.785 0.878 0.847 0.820 0.626 0.763 0.667 0.659 0.693 0.747 0.863 0.753
No-prediction baseline 0.974 0.963 0.906 0.979 0.970 0.983 0976 0.966 0.965 0.981 0.973 0.964 0.970 0.968 0.978 0.968
Romero_PAMI21 [1] 0.974 0.964 0912 0.978 0.968 0.982 0974 0.965 0.965 0.981 0.972 0.964 0.970 0.969 0.977 0.968
VPT360 (Ours) 0.981 0978 0975 0.986 0.983 0.988 0.983 0.983 0.980 0.983 0.979 0.979 0.980 0.981 0.984 0.982

Trinity College Dublin, The University of Dublin 22l | oo \/_S E N S E
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Results

Comparison with the state of the arts

—— Input Romero_PAMI21  —— VTP360 (Ours) —— GT
aso- 1 28 7 T /;
g | ) 1] |
RS
-50 1 R - .
-100 0 1(')0 —1I00 (') 160 —1'00 6 1(')0 —1'00 <') 160
6(deg) 6(deq) 6(deg) 6(deg)

Fig. 5: Four examples of viewport scanpath predicted by
our VPT360 and Romero_PAMI21 on the David_MMSys18
dataset.

Trinity College Dublin, The University of Dublin




Conclusion

We introduced a novel transformer-based long-term
viewport prediction method for 360° video, namely
VPT360.

We process the user’s viewport scanpath as a time-
dependent sequence and model the time dependencies
to predict future viewport scanpath.

By exploiting the self-attention mechanism in the
transformer to compute the impact between every two
elements in a sequence, we efficiently model long-term
time dependencies in the viewport scanpath without any
other video content information.

Trinity College Dublin, The University of Dublin

Our ablation study validated the usage of sinusoidal
position embedding, combination loss function, and 1-
layer transformer encoder processing 1-second viewport
scanpath contributes to the highest accuracy in 5- second
prediction.

Our VPT360 requires the least learnable parameters and
achieves the highest accuracy on short-term and long-
term prediction over three widely-used datasets
compared with other state-of-the-art methods.

In future work, we intend to develop an effective yet
simple method to integrate the saliency maps of 360°
video to increase the prediction accuracy and benefit the
streaming system.
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@VOLOGRAMS

Volu: Volumetric video content creation with
a single mobile phone, available to everyone!

https://www.volograms.com
https://youtu.be/mIADjAIISYs

https://www.volograms.com/volu

Tinity Coilege Dublin, The University of Dublin
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Remote User Behaviour Study
V-SENSE

®* A mobile AR application for Android
smartphones was developed.
® User behaviour data was collected

remotely.
|
® We provide a detailed analysis of (
user navigation in a marker-based
AR scenario

3 Trinity College Dublin, The University of Dublin QoMEX 2021 — Montreal, Canada \/_S E N S E



User Study — Volumetric Data

The University of Dublin

V-SENSE

Two volumetric videos, represented as dynamic 3D
meshes with texture information:

®  “Sir Frederick”

®  60-seconds long,
®  showing a man telling a story for the visitors of a castle
® ~25K polygons and 1024 x 1024 pixel texture maps
() IINiCOII
® 7-secondslong,
® asample VV showing a surprised man
([ J

~16K polygons and 4096 x 4096 pixel texture maps

® Both videos were 30 fps. “Sir Frederick” “Nico”
ir Frederic ico

5 Trinity College Dublin, The University of Dublin QoMEX 2021 — Montreal, Canada




Quantitative Analysis Results
V-SENSE

2D histogram of relative positions, with respect to the VV

o 0.03 i
-3 ", 0.03
.02

2 0.0 2 0.02
-1 0.01 -1 0.01
0 - 0 0
1 1

2 2

3 3

4 + 4

i 3 210 2 3 4 4 3 21012 3 4
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Quantitative Analysis Results

Distribution of WOENSE
users’ relative 210 o, 150 210
viewpoints 240 0.1 120 240
0.05
* 44% of the time 270 90 270
looking at the front
® (+20° difference 300 60 300
from centre)
* 72% of the time 330 " 30 330
looking at
{ ]
ifl}gn;ger frontal arc of “Sir Erederick” “Nico”

12 Trinity College Dublin, The University of Dublin QoMEX 2021 - Montreal, Canada
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Quantitative Analysis Results ) Dubin
V-SENSE

Distribution of users’ relative vertical viewpoints

90 .
44% of time B e 60
* [35° 55°]

30 30

74% of time
* [30° 60°]

0 0

015 01 005 O 0.15 0.1 0.05
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I3D Mesh Resolution

I VYOLOGRAMS 50k polys/frame 15k polys/frame 4k polys/frame

~1GB / minute ~400MB / minute ~150MB / minute



Content Delivery Pipeline for Volumetric Video

From content acquisition to display and quality assessment, several steps of the content
delivery pipeline for free-viewpoint videos are designed and analysed.

-8 12
10 =4 250K 1
- 495K
S i . .
0 2000 4000 G000 BOOD 10000 12000 14000 160CO 18000
Bilrate (Kbps)
matis

[ 1000 2000 3000 4000 5000 6000
p2plane,, .

Zerman, Emin; Gao, Pan; Ozcinar, Cagri; Smolic, Aljosa; “Subjective and objective quality assessment for volumetric video compression”, IS&T Electronic Imaging,
Image Quality and System Performance XVI, 2019.

Trinity College Dublin, The University of Dublin




Volumetric Video

How is it stored?

Textured polygonal meshes Coloured point clouds
* \Vertices and Faces * Points
* Texture atlas * Attributes (e.g., colour, normal, etc.)

% | College

Trinity College Dublin, The University of Dublin ot \/_S E N S E




Related Work

Quality assessment

Polygonal meshes: Co louds
o Dou.man.oglou et al. : Loty vailab Alexiou et al. (201_9)
Christaki et al. (20 There are n gy whic ance of MPEG point
different open sou Jatabases , QA for \AY ethods on static
. . and\ng
compression algori ders eroTq
* Google’s Draco was found the best ® Zermapet “""\) and Gongalvez et al.
performing mesh compression q D (i.e., V-PCC).
method, among: nes an clov ol
. Corto Textured M€ ared in the litera®™™" } Tnc2) was found to
. g;achC were not comP _—errorming method.
® OpenCTM

Trinity College Dublin, The University of Dublin




Creating vsenseVVDB2 Database

Both textured meshes and coloured PCs Only coloured point clouds
V-SENSE Data 8i Point Clouds
A A
N/ ‘ A\
(a) AxeGuy (b) LubnaFriends (c) Rafa2 (d) Matis (e) Longdress (f) Loot (g) Redandblack (h) Soldier
[v:25K / p:405K] [v:25K / p:402K] [v:25K / p:406K] [v:25K / p:406K] [p:765K] [p:784K] [p:729K] [p:1.06M]

Zerman, Emin; Ozcinar, Cagri; Gao, Pan; Smolic, Aljosa

Textured Mesh vs Coloured Point Cloud: A Subjective Study for Volumetric Video Compression

Twelfth International Conference on Quality of Multimedia Experience (Q0MEX), IEEE Athlone, Ireland.
Trinity College Dublin, The University of Dublin




Subjective Data Collection

Sample stimuli

Here are two heavily compressed sequences

TMC1-RAHT (Point cloud) Draco + JPEG (Mesh)

Trinity College Dublin, The University of Dublin
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Results

Mesh vs. Point Cloud

Textured mesh seems to be better than point clouds in high-
bitrate cases, whereas point cloud compression is better in

limited bitrate cases.

80
60 é@_ &
» @
g 4W0FY
—©—Draco+JPEG
o0bs = G-PCC (RAHT)
! -{& V-PCC (Al)
-~ V-PCC (RA)
0 A A
20 40 60 80 20 40 60 10 20 30 40 50 60 20 40 60
Bitrate (Mbps) Bitrate (Mbps) Bitrate (Mbps) Bitrate (Mbps)
(a) AxeGuy (b) LubnaFriends (c¢) Rafa2 (d) Matis

Zerman, Emin; Ozcinar, Cagri; Gao, Pan; Smolic, Aljosa
Textured Mesh vs Coloured Point Cloud: A Subjective Study for Volumetric Video Compression

Trinity College Dublin, The University of Dublin
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Jonathan Swift: AR application for the Long Room

Enhancing museum visitor experience
® The Library of Trinity College Dublin
curators were interested in using
immersive imaging
* Augmented Reality improves visitor
experience while preserving the cultural
heritage site

User studies for validation

° Conducted in The Long R00m in the Old O’Dwyer, !\l., Ondej, J., Pagés R‘., Ampllfamlt.ls, K., and‘S'moll.c, A. (3018). Jonathan
Swift: Augmented Reality Application for Trinity Library’s Long Room. In:

Libra ry in Trlnlty CO”ege Dublin Rouse R., Koenitz H., Haahr M. (eds) Interactive Storytelling. ICIDS 2018.

. . Lecture Notes in Computer Science, vol 11318. Springer, Cham.
°
O UtSId eregu la ropening h ours Young, G. W. (2019). Demonstration of the Jonathan Swift Experience: An
° App|e iPad & Microsoft HoloLens augmented and virtual reality application for TCD’s Long Room library
[Interactive AR Experience]. The 13th Annual Irish Human-Computer

Interaction (HCI) Conference, NUI, Galway.

Trinity College Dublin, The University of Dublin




Experiment Methodology

Participants
®* TCD Library and Faculty of Arts &
Humanities
® 17 volunteers between ages 25-65
Procedure
® Briefing

®* Presentation (at least 3 mins each)
®*  Both tablet and HMD
®* Randomized order

® Questionnaire
®*  5-point Likert scale & Preference
*  “Why did you give this score?”

Zerman, E., O'Dwyer, N., Young, G. W, and Smolic, A. (2020). A Case Study on the Use of Volumetric Video in Augmented Reality for Cultural Heritage. In: Proceedings of the
11th Nordic Conference on Human-Computer Interaction (NordiCHI *20), Association for Computing Machinery (ACM), Tallinn, Estonia.

O’Dwyer, N., Zerman, E., Young, G. W, Smolic, A, Dunne, S., and Shenton, H. (2021). Volumetric Video in Augmented Reality Applications for Museological Narratives: A
user study for the Long Room in the Library of Trinity College Dublin. ACM Journal on Computing and Cultural Heritage (JOCCH), 14(2), 1-20.

Trinity College Dublin, The University of Dublin




Quantitative Analysis — Visitor Experience

15

m Very Poor
w
g 10 Poor
S :
a Fair
w
& 3 Good
. ® Excellent
0

Quality Format Nature
Quality: The overall quality of the application, including the performances of an actor
disclosing some historical information.

Format: The type of technology used for information disclosure and how it compares to
existing museum technologies like audio guides.

Nature: The whimsical and humorous nature of the story, and its playful mode of delivery,
versus formal, pertinent information that is expected in traditional museum settings

Trinity College Dublin, The University of Dublin




Quantitative Analysis — Technical Aspects

o 0

a4

%

o 3

3

g2

S

§ O I T T 1
= Quality of the Quality of the Audio

Application Representation  Clarity

The development quality and the
technology were inspected in terms
of:

Overall quality HMD

Visual quality
Audio clarity

Trinity College Dublin, The University of Dublin

Mean Opinion Scores

[e)

Tablet

® Overall
Tablet
HMD

;‘ T

[S—

Quality of the Representation

No differences found between HMD and
Tablet

People preferred HMD in terms of
immersion even though Tablet had better
visual quality.




Qualitative Analysis

Technological Limitations:
* Participant comments highlighted
shortcomings of the current state-

of-the-art technology

showed parts of him
at a time (narrow
fleld of vision), but

difficult to
see the

* Volumetric Video Reconstruction

face, e.g. nose,

“ floating on -
...the face. not so § [thz]a;crlnf oe of some slight
was also a bit successful : "g distortion &
flat” wift”.

fllckerlng of the

Trinity College Dublin, The University of Dublin



Qualitative Analysis

Immersion:
* The AR application was successful * Device-related comments
in presenting the participants with

an overall quality experience

ough the quality
of representation on
HoloLens was not as good
as iPad, the HoloLens was
still a more immersive
compelling experj

°* |Immersion & the nature of delivery

conversation”
with a “very
lifelike figure o

”

“HoloLens was a

tone, that is, one feels bit heavy”

they’re in front of a

Trinity College Dublin, The University of Dublin 5] Conege \/_S E N S E




V-SENSE

The University of Dublin

Light Fields

Professor Aljosa Smolic
SFI Research Professor of Creative Technologies




The University of Dublin

Focus Guided Light Field Saliency Estimation

2021 Thirteenth International Conference on Quality of Multimedia Experience (QoMEX)

Authors: Ailbhe Gill, Emin Zerman, Martin Alain, Mikael Le Pendu, Aljosa Smolic




Light Fields

e Light rays travelling within a 3D-space captured using a light field camera.
® Can be stored in 2D as an array of sub-aperture images or a stack of refocused images

I
T T T T
“essssass
T
T
T

http://lightfield.stanford.edu/Ifs.html http://www.lightfield-info.com/
https://raytrix.de/
109
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Where could visual attention prediction in light fields
be of benefit?

The higher dimensionality of light fields brings with it challenges where visual attention
prediction could be of benefit:

® Rendering for displays

e Compression

® (Quality assessment

20+ VIEWS

« Multi-depth plane.
- Swept Volume

Multi-view

http://www.fovi3d.com/technology#light-field-display-multiview-computation
Trinity College Dublin, The University of Dublin

110
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Light Field Saliency Estimation

_______|PreviousWork__JourWork _______J—

Saliency Salient Object Detection  Visual Attention Prediction
Estimation
MAC Model
Ground Truth Binary map obtained by Probability map obtained by
human segmentation of tracking eye fixations of
all-in-focus images various renderings
Aim Detect and segment Predict all regions of visual
semantic objects that interest and the extent by
stand out in the scene which they attract visual
attention
Output 2D saliency map with Four-dimensional saliency field Stimulus GT Our Model
salient object and focus map used to generate
segmented saliency map of any LF
rendering
£hang, Jun, et al. “LIgNT Tield sallency detection WIth deep convolutional NeTWorks.” IEEE 1ransactions on Image Frocessing 29 (2U20): 4421-4434.
Piao, Yongri, et al. "Exploit and Replace: An Asymmetrical Two-Stream Architecture for Versatile Light Field Saliency Detection.” AAAI. 2020. 111

Trinity College Dublin, The University of Dublin




Saliency Field: ¥

® A saliency map assigns a probability of
visual importance to every pixel of an
image.

e Light field saliency should assign a
probability of visual importance to every
ray of a light field

Gill, Ailbhe; Zerman, Emin; Alain, Martin; Le Pendu, Mikael; Smolic, Aljosa
Focus Guided Light Field Saliency Estimation Inproceedings
In: QoMEX, IEEE 2021.

Trinity College Dublin, The University of Dublin



Rendered Light Field Dataset

How to choose a Data Set?

Light Fields chosen:
e contained multiple regions or objects with high colour contrast
® contained regions with great edge density and local contrast at varied depths
and spatial locations.

e were acquired using different methods/ camera types

https://v-sense.scss.tcd.ie/research/light-fields/visual-attention-for-light-fields/

Trinity College Dublin, The University of Dublin 7 \/_S E N S E




Eye-tracking Data Collection

Experiment

® Used the SR Research Eyelink 1000 plus

e All-in-focus videos played to avoid first
time viewing bias

e C(Calibration step

e Full set of videos displayed in randomised
order to each participant

e Eye fixation data of 21 participants was
recorded for five renderings of 20 light
fields

Trinity College Dublin, The University of Dublin

SR Research Eyelink, https://www.sr-research.com/eyelink-1000-plus/

114

%] | oo \/_S E N S E



Results
Scanpaths

Reference All-in-focus i i Front-to-back Back-to-front

Vinyl

Treasure
Chest

115
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Results
Average Saliency Maps

Medieval All-in-focus Region-1 Region-2 Front-to-back Back-to-front

116
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Results

Average Saliency Maps

Treasure Chest All-in-focus Region-1 Region-2 Front-to-back Back-to-front

—

Reference

Saliency Map

Trinity College Dublin, The University of Dublin




Focus Guided Saliency Estimation Pipeline

e Hm
L 2D S/-}I sal.lency | Focus gu'lded Wy
estimation rendering r
Disparity Focus map F
estimation estimation

Trinity College Dublin, The University of Dublin
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Focus Guided Rendering

® The shift and sum algorithm is used to weight the saliency sub-
aperture images (SAls) with the focus map.

) )—ZA s t (s,t,up, vr, ()["')\Ijsf(llp zvp

R = 2 l
l
&

1 within the opening

O otherwise .

® The algorithm can be simplified to:

U, (u,v,0F) = Fr(u,v,0F) ZA(S, t) \Ifs,t(up, 'UF)

s,t

119
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Qualitative Results — Vespa

Ground t{uth data
[ )

p ;I
h o
Region-1 ju ‘

g’
— P
Region-2 - . ‘

Stimulus GT Fixations GT VA Our No Focus Guidance DeepGaze Il
(SSSE)
Model
(FGSE)

Trinity College Dublin, The University of Dublin




Qualitative Results — Tower
Ground Truth Data

' . =
| -

Region-1

Region-2

Stimulus GT GT VA Our No Focus DeepGaze ||
Fixations Guidance
Model (SSSE)
(FGSE)

Trinity College Dublin, The University of Dublin




Qualitative Results — Vinyl
Ground Truth Data

L - ..A LAY,
) e
et
: =
e

Region-1

Region-2

Stimulus GT GT VA No Focus DeepGaze Il
Fixations Guidance
MOdEI (SSSE)
(FGSE)

Trinity College Dublin, The University of Dublin




Quantitative Results

TABLE I: Analysis of the proposed method’s parameters?. TABLE II: Metric results* for the proposed FG'SE method
compared with the baseline shift & sum saliency estimation
(SSSE) without focus guidance.

Saliency method AUCT NSST CCt KLD] SIM?T

IF'GSE Eq. 5 - w/o blur | 0.844 1.614  0.672  0.659  0.636

FGSE Eq. 7 - wlo blur | 0.844 1.608  0.671  0.680  0.635

"GSE Eq. 5 - .845 ! . . ; S

FCSE g7 - wiblr|[08 T8 0680051 06i0] SSSE 08171348 0568 0695 0583
FGSEsp—o.7 0.831 1.463  0.618 0.627  0.610

TAll FGSE methods use oy = 0.4. Boldface indicates the best result in FGSEsp—0.6 0.834 1497  0.632 0.618
each column. FGSEsp—o0.5 0.839 1.546  0.652 0.602 0.628
FGSE;p—0.4 0.845 1.618 0.680 0619 0.640
FGSEsp—0.3 0.847 I 1.713 _ 0.713  0.790 | 0.649
FGSE,, 02 | 0835 1.445  0.629
FGSE;p,—0.1 0.781 1.572  0.637 3.882 0512
DeepGaze 11 0.851 1.745  0.703  0.585  0.653

Saliency method | AUCT NSSt CCt  KLD] SIM?T

tDeepGaze 11 results are reported for readers’ information. Boldface indicates
the best score for each column, and /[talic indicates the best results for the
FGSE method.

Trinity College Dublin, The University of Dublin
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