

29 September 2021

Computational Light-Field Microscopy and an Application in Neuroscience

Pier Luigi Dragotti

Joint work with

Peter Quicke

Carmel Howe

- Multi-photon microscopy and neuroscience
- The image formation process in light-field microscopy (LFM)
- Volume reconstruction
 - Discretization of the forward model
 - Reconstruction based on ADMM
 On going work: extension of the model-based approaches to deep learning via unfolding
- Localization of neurons using LFM
 - EPI structure and EPI dictionary
 - Localization based on convolutional sparse coding

On going work: extension of the model-based approaches to deep learning via unfolding

Conclusions

Imperial College London Two-Photon Microscopy for Neuroscience

- Goal of Neuroscience: to study how
 information is processed in the brain
- Neurons communicate through pulses called Action Potentials (AP)
- Need to measure in-vivo the activity of large populations of neurons at cellular level resolution
- Two-photon microscopy combined with right indicators is the most promising technology to achieve that

Imperial College Two-Photon Microscopy

- Fluorescent sensors within tissues
- Highly localized laser excites fluorescence from sensors
- Photons emitted from tissue are collected
- Focal spot sequentially scanned across samples to form image

Imperial College Two-Photon Microscopy

- Fluorescent sensors within tissues
- Highly localized laser excites fluorescence from sensors
- Photons emitted from tissue are collected
- Focal spot sequentially scanned across samples to form image
- Two-photon microscopes in raster scan modality can go deep in the tissue but are slow

Imperial College Two-Photon Microscopy

- In order to speed up acquisition one can change the illumination strategy
- This mitigates the issue but does not fix it

Light-field Microscopy

Light-Field Microscopy (LFM) is a highspeed (scan-less) imaging technique that uses a simple modification of a standard microscope to capture a 3D image of an entire volume in a single camera snapshot

Imperial College Light-field Microscopy and Illumination London Strategies

Light-field Microscopy

Light-field Microscopy

Imperial College Epipolar Plane Image (EPI)

- Taking one slice of the lightfield leads to the EPI
- Points are mapped onto lines in the (EPI)
- Slope of lines are inversely proportional to the depth
- Lines with larger slopes occlude lines with smaller slopes

IBR Results on the Lightfield

Pearson et al. IEEE TIP 2013

Light-field Microscopy

- Challenges
 - Cannot use ray approximation (geometric optics) to model the image formation. Need to use wave optics
 - Scattering induces blur, making inversion more challenging
- Opportunities
 - Data is sparse (neurons fire rarely and are localized in space)
 - Occlusion can be ignored
 - Localization of neurons is often sufficient (no need for high-quality volume reconstruction)

Imperial College London Light-field Microscopy – Wave Model

- Wave Optics model [Broxton et al. 2013]
- Based on estimating the wavefront at three specific points:
 - Use Debye theory to compute the wavefront at NIP
 - Microlens array (MLA) then makes the PSF periodically shift invariant
 - Use Fresnel diffraction solution to estimate the wavefront at the sensor plane

Imperial College London Light-field Microscopy – Wave Model

- Wave Optics model [Broxton et al. 2013]
- Based on estimating the wavefront at three specific points:
 - Use Debye theory to compute the wavefront at NIP
 - Microlens array (MLA) then makes the PSF periodically shift invariant
 - Use Fresnel diffraction solution to estimate the wavefront at the sensor plane

Imperial College Discretization of the Forward Model

- Given the expression of the wavefront per point source
- The PSF h(p, x) is discretized by shifting the point source along a grid and by storing the sampled light-field pattern. This leads to the discrete system g = Hf
- Issue:
 - the signal might be better modelled using an elementary function different from a Dirac
 - Dependency across depths not exploited
 - Blocking artefacts at the native object plane

Imperial College Volume Reconstruction from LF Data

- Given g = Hf reconstruction of f can be problematic
 - *H* is ill-conditioned
 - Note that *H* is block-circulant (periodically shift invariant) and can be modelled with a filterbank
- Approach:
 - Use generalized sampling theory to improve the discretization
 - Use SVD to simplify the forward model
 - Inversion based on stronger priors and ADMM

Imperial College Discretization of Forward Model

- New discretization
 - f(x,z) is assumed to belong to a shift-invariant space generated by $\varphi(x,z)$:

• We use linear splines as $\varphi(x, z)$. This leads to a new better-conditioned **H**

$$f(x,z) \in V_{\varphi} \quad \widehat{\varphi}(-x,-z) \xrightarrow{} \Delta x_{1}, \Delta z \xrightarrow{} \varphi(x,z) \xrightarrow{} \mathcal{H} \xrightarrow{} d(x) \xrightarrow{} \Delta x_{2} \quad g[k]$$

Imperial College Discretization of Forward Model

• The forward model is periodically shift invariant and so can be modelled wit a filter-bank

Imperial College Discretization of Forward Model

• The new filters related to *H* are more stable:

Imperial College Volume Reconstruction from LF Data

• "Linear" reconstruction with the new forward model does not suffer from blocking artefacts:

g = Hf

Imperial College Volume Reconstruction from LF Data

• "Linear" reconstruction with the new forward model does not suffer from blocking artefacts:

Imperial College London Volume Reconstruction from LF Data

• Further improvements are possible by adding further priors:

$$\begin{split} \min_{\mathbf{f}} & \|\mathbf{H}_{\delta}\mathbf{S}_{\varphi}\mathbf{A}_{\varphi}\mathbf{f} - \mathbf{g}\|_{2}^{2} + \|\mathbf{D}_{x}^{n}\mathbf{f}\|_{1} + \|\mathbf{D}_{y}^{n}\mathbf{f}\|_{1} + \|\mathbf{D}_{z}^{n}\mathbf{f}\|_{1} \\ \text{s.t.} & \mathbf{f} \geq \mathbf{0}, \end{split}$$

Optimization solved using ADMM

Imperial College Volume Reconstruction from LF Data

•

Inspired by LISTA¹, we "unfold" this iteration to obtain a deep network

¹Gregor Karol and LeCunYann, "Learning fast approximations of sparse coding ", Proceedings of the 27th International Conference on International Conference on Machine Learning, 2010

Imperial College On-going: Learning-based Reconstruction

- Combines the light-field wave-optics model with Learned Iterative Shrinkage-Thresholding Algorithm (LISTA)
- Un-paired data calls for adversarial network

Imperial College London Learning-based Reconstruction- Results

Imperial College London Localization of Neurons using LFM

Real Lightfield Images and EPIs

Imperial College London

Real LFM for a bead in different depths ranging from 0 to 32 um

i=9, j=5 i=9, j=13 i=9, j=6 i=9, j=7 i=9, i=8 i=9, j=9 i=9, j=10 i=9, j=11 i=9, j=12 i=9, i=14 i=<u>7.</u>j=9 i=<u>8. i</u>=9 i=9_j=9 i=<u>11</u> j=9 i=12_j=9 i=13, j=9 i=6, j=9 i=10 j=9 i=14_j=9 10 EPI ik denth Sun PI ik depth 12un EPI_ik_depth_20ur EPI il depth 12un k axis EPI_ik_depth_32um k axis EPI_ik_depth_24um k axis EPI_ik_depth_28um EPI il depth 24um EPI_jl_depth_28um EPI il depth 32um 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 5.0

Sub-aperture images along vertical and horizontal directions

EPIs from real LFM data. i-k direction (left) and j-l direction (right)

Dictionary of EPI from Simulated Lightfield Microscope

Simulated EPI dictionary. Each atom corresponds to a specific depth

Imperial College Convolutional Sparse Coding via ADMM

We develop a convolutional sparse coding algorithm to decompose the input EPI into latent factors to estimate depth and spatial locations.

Imperial College Neuron Localization Approach

Location Estimation Algorithm

Imperial College Numerical Results

(a) Raw LFM data for a neuronal cell at different depths away from the focal plane.

(b) Sub-aperture image arrays for depth 0, 12, 24 and 36 $\mu m,$ respectively.

(c) Foreground and Background at depth 12 $\mu\mathrm{m}$

Numerical Results

(d) The central column of the sub-aperture image array at depth 36 µm. View changes from down to up. Above: with background. Below: background is removed.

Numerical Results

Imperial College On-going work – CISTA for localization

- The convolutional sparse model leads naturally to an iterative optimization strategy (ISTA) that can be unfolded
- Training based on synthetic data obtained using the Broxton forward model

On-going work – CISTA for localization

(a) Localization performance of phase-space method [6,8]. RMSE for x, y, z position detection is 4.05, 5.48, 3.41 μm, respectively.

(b) Localization performance of CSC approach [9]. RMSE for x, y, z position detection is 1.78, 2.94, 1.14 µm, respectively.

(c) Localization performance of the proposed CISTA-net. RMSE for x, y, z position detection is $1.60, 1.98, 0.82 \mu$ m, respectively.

Conclusions

- Light field systems can have an impact in neuroscience because of the crucial trade-off between resolution in time and space
- Light field microscopy brings unique challenges e.g., wave optics
- In neuroscience applications, data is sparse and occlusion is negligible
- Understanding the physics of the problem is crucial
- Learning will labelled data is challenging

Thank you!

Imperial College References

On Light-Field Microscopy and Neuroscience

- P. Song, H. Verinaz Jadan, C. Howe, P. Quicke, A. Foust and P.L. Dragotti, "3D localization for lightfield microscopy via convolutional sparse coding on epipolar images", IEEE Transactions on Computational Imaging, Vol:6, pages:1017-1032, 2020.
- H. Verinaz Jadan, P. Song, C. Howe, A. Foust and P.L. Dragotti, "Artifact-free 3D Reconstruction for Light Field Microscopy", IEEE Transactions on Computational Imaging, submitted 2021.
- P. Song, H. Verinaz Jadan, C. Howe, P. Quicke, A. Foust and P.L. Dragotti, Light-field microscopy for optical imaging of neuronal activity, IEEE Signal Processing Magazine, submitted 2021.