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Outline
• Multi-photon microscopy and neuroscience 

• The image formation process in light-field microscopy (LFM)

• Volume reconstruction
– Discretization of the forward model
– Reconstruction based on ADMM

• Localization of neurons using LFM 
– EPI structure and EPI dictionary
– Localization based on convolutional sparse coding

• Conclusions

On going work: extension of the model-based approaches to deep learning via unfolding

On going work: extension of the model-based approaches to deep learning via unfolding



Two-Photon Microscopy for Neuroscience

• Goal of Neuroscience: to study how 
information is processed in the brain

• Neurons  communicate through pulses  called 
Action Potentials (AP)

• Need to measure in-vivo the activity of large 
populations of neurons at cellular level 
resolution

• Two-photon microscopy combined with right 
indicators is the most promising technology 
to achieve that 



Two-Photon Microscopy

• Fluorescent sensors within tissues 
• Highly localized laser excites fluorescence 

from sensors
• Photons emitted from tissue are collected
• Focal spot sequentially scanned across 

samples to form image
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Two-Photon Microscopy

• Fluorescent sensors within tissues 
• Highly localized laser excites fluorescence 

from sensors
• Photons emitted from tissue are collected
• Focal spot sequentially scanned across 

samples to form image
• Two-photon microscopes in raster scan 

modality can go deep in the tissue but are 
slow



Two-Photon Microscopy

• In order to speed up acquisition one can change the illumination strategy
• This mitigates the issue but does not fix it 



Light-field Microscopy

Light-Field Microscopy (LFM) is a high-
speed (scan-less) imaging technique that 
uses a simple modification of a standard 
microscope to capture a 3D image of an 
entire volume in a single camera snapshot



Light-field Microscopy and Illumination 
Strategies



Light-field Microscopy

2048x2048x41 pixels

Measured LF

2048x2048 pixels

z=-8μm        z=0μm          z=8μm
Input Volume

Image taken from [2]

Introduction
• Light Field Microscopy (LFM) is a high-speed imaging technique that uses a simple modification of a

standard microscope to capture an entire volume in a single snapshot.

Volume Reconstruction for Light Field 
Microscopy

Brain slice (50 μm thick) taken from a GFP Tagged 
triple transgenic mouse line using our light field 
microscope

[2] M. Broxton, et. al., “Wave optics theory and 3-D deconvolution for the light field microscope,” Optics express, vol. 21, no. 21, pp. 25418– 25439, 2013. 1



Light-field Microscopy



Epipolar Plane Image (EPI)

• Taking one slice of the lightfield leads to 
the EPI 

• Points are mapped onto lines in the (EPI)
• Slope of lines are inversely proportional 

to the depth
• Lines with larger slopes occlude lines with 

smaller slopes



IBR Results on the Lightfield

Pearson et al. IEEE TIP 2013



Light-field Microscopy 

• Challenges 
• Cannot use ray approximation 

(geometric optics) to model the image 
formation. Need to use wave optics

• Scattering induces blur, making 
inversion more challenging

• Opportunities
• Data is sparse (neurons fire rarely 

and are localized in space)
• Occlusion can be ignored
• Localization of neurons is often 

sufficient (no need for high-quality 
volume reconstruction)



Light-field Microscopy – Wave Model

• Wave Optics model [Broxton et al. 2013]
• Based on estimating the wavefront at three 

specific points:

• Use Debye theory to compute the 
wavefront at NIP

• Microlens array (MLA) then makes 
the PSF periodically shift invariant

• Use Fresnel diffraction solution to 
estimate the wavefront at the sensor 
plane



Light-field Microscopy – Wave Model

• Wave Optics model [Broxton et al. 2013]
• Based on estimating the wavefront at three 

specific points:

• Use Debye theory to compute the 
wavefront at NIP

• Microlens array (MLA) then makes 
the PSF periodically shift invariant

• Use Fresnel diffraction solution to 
estimate the wavefront at the sensor 
plane

Microlens Array
Objective Tube Lens

𝑥
𝑧

LF Microscope

Image Sensor

NOP NIP



Discretization of the Forward Model

• Given the expression of the wavefront per 
point source

• The PSF ℎ 𝒑, 𝒙 is discretized by shifting the 
point source along a grid and by storing the 
sampled light-field pattern. This leads to the 
discrete system 𝒈 = 𝑯𝒇

• Issue: 
• the signal might be better modelled using 

an elementary  function different from a 
Dirac

• Dependency across depths not exploited
• Blocking artefacts at the native object 

plane 

3
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Fig. 1. Description of a light field system. (a) Basic block diagram of a
light field microscope Hd. The system is composed of a continuous ideal
microscope H followed by a discretization step represented by a convolution
with kernel d(x) followed by sampling. (b) Conventional discretization ap-
proach and optical diagram. The conventional approach computes the impulse
response for different input locations, which leads to a block-circulant-like
matrix for each z-location. The upsampling factor s and the number of pixels
under each microlens N define the block sizes of H.

Our work assumes that h(x,p) is computed using the
optical analysis first proposed by Broxton et al. [12]. Thus,
the impulse response h(x,p) is described by independently
studying three parts of the system: propagation from the source
to the microlens array, modulation due to the microlenses,
and propagation from the microlens array to the image sensor
plane. However, as mentioned previously, an additional pro-
cess must model the light field discretization performed by
the image sensor. This process is simply a convolution with
a kernel d(x) followed by sampling. The final output of the
system is a discrete image g[k]:

g[k] = gd(k�x), (3)

where gd(x) = g(x) ⇤ d(x), and �x is the sampling interval.
In many practical cases, it holds that �x = T/N , where T is
the microlens pitch and N is the number of pixels under each
microlens. See Figure 1 (b).

As explained in [12], the system H is not shift-invariant.
However, it satisfies an important property – periodic shift-
invariance. Namely, ignoring the finite extent of the device,
for any x, z 2 R, if the input is shifted by multiples of
T along the lateral axis, then the output is also shifted by
multiples of T . Hence, the following relationship holds :

g(x� nT ) = H{f(x� nT, z)}, 8n. (4)

This means that for any depth z, this equation describes a
periodically shift-invariant behaviour. An equivalent form to
characterize this property is to state that the impulse response
h(x, xp, zp) of the system H is periodic:

h(x, xp, zp) = h(x� T, xp � T, zp). (5)

Finally, the entire system is discretized such that the in-
version can be computed numerically. In [12], a standard
discretization approach was proposed: first, a Dirac delta is
shifted laterally and axially; then, each shifted Dirac is used
individually as input to compute the corresponding impulse
response, which is then stored in a matrix. The shifts of

the Dirac delta are defined by an axial sampling interval �z
and a lateral sampling interval T

s , where the integer s is the
upsampling factor, as shown in Figure 1(b). Since the system
is not shift-invariant, multiple impulse responses for different
positions must be stored. The final discrete system can be
described by:

g = Hf , (6)

where matrix H 2 Rm⇥n maps a vectorized volume f 2 Rn

into a light field g 2 Rm. The number n of voxels of the
volume is usually much larger than the number m of pixels
of the light field.

In [12], the inverse problem derived from Equation (6) is
solved using RL. Since property (4) leads to matrix H that
is block-circulant for each z position, it is feasible to solve
the problem by using RL [12]. However, it can be highly
computational demanding. Furthermore, the recovered volume
suffers from artifacts near the native object plane (NOP): the
plane where a point source is in focus at the microlens array,
as described in [12] (conventionally, the plane z = 0).

IV. FORWARD MODEL ANALYSIS

In this section, we study the description of the light field
system. First, we analyze a framework that generalizes the
conventional discretization approach by using shift-invariant
subspaces for sampling. Then, we describe the system using
filter banks, which in turn suggests a model simplification
based on SVD that can be used to accelerate the computation
of the forward model.

A. A general discretization framework

As mentioned previously, the standard approach presented
in [12] discretizes the system by computing the impulse
response for different input positions. However, a more general
strategy is to discretize both the input and output using the
assumption that the volume f(x, z) belongs to a shift-invariant
subspace (SIS) defined by a template function '(x, z), as pro-
posed in [25] for convolution operators in digital holography.
If a function f(x, z) belongs to a SIS V' generated by '(x, z),
it can be written as follows:

f(x, z) =
X

k

X

l

fk,l'

✓
x

�x1
� k,

z

�z
� l

◆
, (7)

where fk,l = hf(x, z), '̃( x
�x1

�k, z
�z � l)i and '̃(x, z) is the

dual basis of '(x, z). See also Figure 2(a).
This indicates that filtering f(x, z) with '̃(x, z) and then

sampling with sampling interval �x1, �z would lead to the
samples fk,l. Therefore, if f(x, z) is the input to the light field
microscope, the model in Equation (7) suggests an alternative
discretization process illustrated in Figure 2 (b). The input is
sampled using the template function '(x, z) with sampling
intervals �x1, �z. The output is sampled using the template
function d(x) with sampling interval �x2. Notice that the
sampling of the output is performed intrinsically by the light
field microscope, whereas the sampling of the input depends
on how f(x, z) is modelled. For example, if we assume f(x, z)
is a bandlimited signal, '(x, z) is the sinc function. If we
assume f(x, z) is a uniform spline, then '(x, z) is a spline.



Volume Reconstruction from LF Data

• Given 𝒈 = 𝑯𝒇 reconstruction of 𝒇 can be problematic
• 𝑯 is ill-conditioned
• Note that 𝑯 is block-circulant (periodically shift invariant) and can be modelled with a filter-

bank 

• Approach: 
• Use generalized sampling theory to improve the discretization
• Use SVD to simplify the forward model
• Inversion based on stronger priors and ADMM



Discretization of Forward Model

• New discretization
• 𝑓(𝑥, 𝑧) is assumed to belong to a shift-invariant space generated by  𝜑(𝑥, 𝑧):

𝑓 𝑥, 𝑧 = ∑!,# 𝑓!,#𝜑 𝑥 − 𝑘, 𝑧 − 𝑙 where 𝑓!,# = 𝑓 𝑥, 𝑧 , 4𝜑(𝑥 − 𝑘, 𝑧 − 𝑙)

• We use linear splines as 𝜑 𝑥, 𝑧 . This leads to a new better-conditioned 𝑯

4
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Fig. 2. Discretization of the light field system using shift-invariant subspaces.
(a) Discretization of a volume f . If f belongs to the shift-invariant subspace
defined by template function '(x, z), the discretization can be inverted after
filtering with '(x, z). This allows performing a non-standard discretization
that generalizes the conventional discretization method in LFM, as shown in
part (b). Notice that the input discretization depends on the sampling density
and template function '(x, z), while the output is discretized intrinsically by
the device depending on the physics of the pixel sensors.

The discretization process leads to a new system defined by
the impulse response h'(x, xp, zp). This system is equivalent
to a cascade of three systems, a 2D convolution with kernel
'(x, z), the system H, and a 1D convolution with kernel d(x).
See Figure 2 (b) for clarification. Therefore, by construction,
periodicity still holds for the impulse response h'(x, xp, zp):

h'(x, xp, zp) = h'(x� T, xp � T, zp). (8)

The corresponding discretized impulse response can be found
from the impulse response h'(x, xp, zp) by sampling it along
each dimension. Therefore, the discrete system is defined by:

h'[k, kp, lp] = h'(k�x2, kp�x1, lp�z). (9)

Furthermore, using Equation (8) and Equation (9) it is possible
to show that a periodicity property also holds for the discrete
impulse response h'[·]:

h'[k, kp, lp] = h'[k � rq, kp � ts, lp], (10)

where we assumed that integers q, r, s and t exist such
that �x1

T = q
s and �x2

T = t
r and where both fractions are

irreducible.
Finally, we remark that the conventional discretization pro-

cedure can be understood as a particular case of this more
general framework. Note that if we allow '(x, z) to be a Dirac
delta, q = 1 and t = 1, our framework reduces to the standard
discretization approach. In this case, s is the upsampling
factor, r is the number of pixels under each microlens N ,
and h'[k, kp, lp] is the standard discrete impulse response, as
described in [12].

B. Model Simplification

Equation (10) indicates that periodically-shift invariance
holds for each depth of the discrete system. Therefore, the
measurement matrix H derived from the discretized impulse
response h'[k, kp, lp] can be written as

H =
DX

i=1

HiSi, (11)

where Si is an auxiliary matrix that selects the depth lp = i
from the discrete volumetric input, D is the number of depths,
and each matrix Hi follows a block-circulant structure due to
Equation (10). Furthermore, as depicted in Figure 3, the peri-
odic shift-invariant property allows each Hi to be represented

(a) (b)

Fig. 3. Filter Bank Representation. In (a), a block diagram of light field
microscope is depicted. For each depth i, the linear system Si performs a
slicing operation which chooses the respective i-th slice of the volume fi[k] =
f [k, i]. Then, each slice is passed through a filter bank to obtain a light
field gi[k] per depth i. Finally, the light field g[k] is the summation of all
gi[k]. (b) For each depth, the filter bank can be approximated by reducing
the number of branches of the bank from ts to F . The sampling filter vm[k]
defines the circulant matrix Vm and the filter cm[k] = �mum[k] defines
the circulant matrix Cm. Filters vm[k], um[k] are the left and right singular
vectors and coefficients �m are the singular values coming from a singular
value decomposition. Notice that when F = ts, the approximation becomes
equality.

as a filter bank that performs a set of convolutions with the
input. This accelerates the computation of the forward model.
Assuming that each Hi is full rank, 2⇥ ts⇥D convolutions
are needed to describe the whole H. This is because the
number of branches needed to represent each Hi equals ts,
and 2 convolutions are required for each branch, as shown in
Figure 3 (b). However, these computational requirements may
be excessive in practice since the number ts of branches can
be very high.

To mitigate this issue, we propose a simplification of
the forward model. The computation can be accelerated by
reducing the number of branches of each filter bank to F by
optimally choosing the corresponding filters. First, we analyze
the case F = 1, and then we generalize for arbitrary F .
Thus, to approximate each Hi using a filter bank with a single
branch, we state the following optimization problem:

min
c,v

kHi �CUrqDtsV
T
k
2
2, (12)

where the matrix Dts is a downsampling matrix of factor ts
and the matrix Urq models upsampling by rq. The matrix V

is circulant, and it is completely defined by one column v,
which corresponds to the input filter of the bank. Similarly,
the matrix C is circulant, and one column c corresponds to
the output filter of the bank. The proper selection of c and v

will allow the best approximation of Hi in the least square
sense. The norm used here is the Frobenius norm.

To solve this problem, we limit the analysis to v with
compact support ts. Since both Hi and CUrqDtsV

T have
a similar structure, they can be expressed as follows:

Hi = (...B̂H,BH, B̌H...), (13)

and
CUrqDtsV

T = (...B̂CV,BCV, B̌CV...). (14)

The notation B̂H means that each column of BH is shifted
upward by rq elements. Similarly, B̌H indicates a downward
shift by rq elements. Similar notations apply to BCV. See
Figure 1 (b) and Figure 3 (a) for clarification. Hence, using
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Fig. 2. Discretization of the light field system using shift-invariant subspaces.
(a) Discretization of a volume f . If f belongs to the shift-invariant subspace
defined by template function '(x, z), the discretization can be inverted after
filtering with '(x, z). This allows performing a non-standard discretization
that generalizes the conventional discretization method in LFM, as shown in
part (b). Notice that the input discretization depends on the sampling density
and template function '(x, z), while the output is discretized intrinsically by
the device depending on the physics of the pixel sensors.

The discretization process leads to a new system defined by
the impulse response h'(x, xp, zp). This system is equivalent
to a cascade of three systems, a 2D convolution with kernel
'(x, z), the system H, and a 1D convolution with kernel d(x).
See Figure 2 (b) for clarification. Therefore, by construction,
periodicity still holds for the impulse response h'(x, xp, zp):

h'(x, xp, zp) = h'(x� T, xp � T, zp). (8)

The corresponding discretized impulse response can be found
from the impulse response h'(x, xp, zp) by sampling it along
each dimension. Therefore, the discrete system is defined by:

h'[k, kp, lp] = h'(k�x2, kp�x1, lp�z). (9)

Furthermore, using Equation (8) and Equation (9) it is possible
to show that a periodicity property also holds for the discrete
impulse response h'[·]:

h'[k, kp, lp] = h'[k � rq, kp � ts, lp], (10)

where we assumed that integers q, r, s and t exist such
that �x1

T = q
s and �x2

T = t
r and where both fractions are

irreducible.
Finally, we remark that the conventional discretization pro-

cedure can be understood as a particular case of this more
general framework. Note that if we allow '(x, z) to be a Dirac
delta, q = 1 and t = 1, our framework reduces to the standard
discretization approach. In this case, s is the upsampling
factor, r is the number of pixels under each microlens N ,
and h'[k, kp, lp] is the standard discrete impulse response, as
described in [12].

B. Model Simplification

Equation (10) indicates that periodically-shift invariance
holds for each depth of the discrete system. Therefore, the
measurement matrix H derived from the discretized impulse
response h'[k, kp, lp] can be written as

H =
DX

i=1

HiSi, (11)

where Si is an auxiliary matrix that selects the depth lp = i
from the discrete volumetric input, D is the number of depths,
and each matrix Hi follows a block-circulant structure due to
Equation (10). Furthermore, as depicted in Figure 3, the peri-
odic shift-invariant property allows each Hi to be represented

(a) (b)

Fig. 3. Filter Bank Representation. In (a), a block diagram of light field
microscope is depicted. For each depth i, the linear system Si performs a
slicing operation which chooses the respective i-th slice of the volume fi[k] =
f [k, i]. Then, each slice is passed through a filter bank to obtain a light
field gi[k] per depth i. Finally, the light field g[k] is the summation of all
gi[k]. (b) For each depth, the filter bank can be approximated by reducing
the number of branches of the bank from ts to F . The sampling filter vm[k]
defines the circulant matrix Vm and the filter cm[k] = �mum[k] defines
the circulant matrix Cm. Filters vm[k], um[k] are the left and right singular
vectors and coefficients �m are the singular values coming from a singular
value decomposition. Notice that when F = ts, the approximation becomes
equality.

as a filter bank that performs a set of convolutions with the
input. This accelerates the computation of the forward model.
Assuming that each Hi is full rank, 2⇥ ts⇥D convolutions
are needed to describe the whole H. This is because the
number of branches needed to represent each Hi equals ts,
and 2 convolutions are required for each branch, as shown in
Figure 3 (b). However, these computational requirements may
be excessive in practice since the number ts of branches can
be very high.

To mitigate this issue, we propose a simplification of
the forward model. The computation can be accelerated by
reducing the number of branches of each filter bank to F by
optimally choosing the corresponding filters. First, we analyze
the case F = 1, and then we generalize for arbitrary F .
Thus, to approximate each Hi using a filter bank with a single
branch, we state the following optimization problem:

min
c,v

kHi �CUrqDtsV
T
k
2
2, (12)

where the matrix Dts is a downsampling matrix of factor ts
and the matrix Urq models upsampling by rq. The matrix V

is circulant, and it is completely defined by one column v,
which corresponds to the input filter of the bank. Similarly,
the matrix C is circulant, and one column c corresponds to
the output filter of the bank. The proper selection of c and v

will allow the best approximation of Hi in the least square
sense. The norm used here is the Frobenius norm.

To solve this problem, we limit the analysis to v with
compact support ts. Since both Hi and CUrqDtsV

T have
a similar structure, they can be expressed as follows:

Hi = (...B̂H,BH, B̌H...), (13)

and
CUrqDtsV

T = (...B̂CV,BCV, B̌CV...). (14)

The notation B̂H means that each column of BH is shifted
upward by rq elements. Similarly, B̌H indicates a downward
shift by rq elements. Similar notations apply to BCV. See
Figure 1 (b) and Figure 3 (a) for clarification. Hence, using
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(a) Discretization of a volume f . If f belongs to the shift-invariant subspace
defined by template function '(x, z), the discretization can be inverted after
filtering with '(x, z). This allows performing a non-standard discretization
that generalizes the conventional discretization method in LFM, as shown in
part (b). Notice that the input discretization depends on the sampling density
and template function '(x, z), while the output is discretized intrinsically by
the device depending on the physics of the pixel sensors.

The discretization process leads to a new system defined by
the impulse response h'(x, xp, zp). This system is equivalent
to a cascade of three systems, a 2D convolution with kernel
'(x, z), the system H, and a 1D convolution with kernel d(x).
See Figure 2 (b) for clarification. Therefore, by construction,
periodicity still holds for the impulse response h'(x, xp, zp):

h'(x, xp, zp) = h'(x� T, xp � T, zp). (8)

The corresponding discretized impulse response can be found
from the impulse response h'(x, xp, zp) by sampling it along
each dimension. Therefore, the discrete system is defined by:

h'[k, kp, lp] = h'(k�x2, kp�x1, lp�z). (9)

Furthermore, using Equation (8) and Equation (9) it is possible
to show that a periodicity property also holds for the discrete
impulse response h'[·]:

h'[k, kp, lp] = h'[k � rq, kp � ts, lp], (10)

where we assumed that integers q, r, s and t exist such
that �x1

T = q
s and �x2

T = t
r and where both fractions are

irreducible.
Finally, we remark that the conventional discretization pro-

cedure can be understood as a particular case of this more
general framework. Note that if we allow '(x, z) to be a Dirac
delta, q = 1 and t = 1, our framework reduces to the standard
discretization approach. In this case, s is the upsampling
factor, r is the number of pixels under each microlens N ,
and h'[k, kp, lp] is the standard discrete impulse response, as
described in [12].

B. Model Simplification

Equation (10) indicates that periodically-shift invariance
holds for each depth of the discrete system. Therefore, the
measurement matrix H derived from the discretized impulse
response h'[k, kp, lp] can be written as

H =
DX

i=1

HiSi, (11)

where Si is an auxiliary matrix that selects the depth lp = i
from the discrete volumetric input, D is the number of depths,
and each matrix Hi follows a block-circulant structure due to
Equation (10). Furthermore, as depicted in Figure 3, the peri-
odic shift-invariant property allows each Hi to be represented
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Fig. 3. Filter Bank Representation. In (a), a block diagram of light field
microscope is depicted. For each depth i, the linear system Si performs a
slicing operation which chooses the respective i-th slice of the volume fi[k] =
f [k, i]. Then, each slice is passed through a filter bank to obtain a light
field gi[k] per depth i. Finally, the light field g[k] is the summation of all
gi[k]. (b) For each depth, the filter bank can be approximated by reducing
the number of branches of the bank from ts to F . The sampling filter vm[k]
defines the circulant matrix Vm and the filter cm[k] = �mum[k] defines
the circulant matrix Cm. Filters vm[k], um[k] are the left and right singular
vectors and coefficients �m are the singular values coming from a singular
value decomposition. Notice that when F = ts, the approximation becomes
equality.

as a filter bank that performs a set of convolutions with the
input. This accelerates the computation of the forward model.
Assuming that each Hi is full rank, 2⇥ ts⇥D convolutions
are needed to describe the whole H. This is because the
number of branches needed to represent each Hi equals ts,
and 2 convolutions are required for each branch, as shown in
Figure 3 (b). However, these computational requirements may
be excessive in practice since the number ts of branches can
be very high.

To mitigate this issue, we propose a simplification of
the forward model. The computation can be accelerated by
reducing the number of branches of each filter bank to F by
optimally choosing the corresponding filters. First, we analyze
the case F = 1, and then we generalize for arbitrary F .
Thus, to approximate each Hi using a filter bank with a single
branch, we state the following optimization problem:

min
c,v

kHi �CUrqDtsV
T
k
2
2, (12)

where the matrix Dts is a downsampling matrix of factor ts
and the matrix Urq models upsampling by rq. The matrix V

is circulant, and it is completely defined by one column v,
which corresponds to the input filter of the bank. Similarly,
the matrix C is circulant, and one column c corresponds to
the output filter of the bank. The proper selection of c and v

will allow the best approximation of Hi in the least square
sense. The norm used here is the Frobenius norm.

To solve this problem, we limit the analysis to v with
compact support ts. Since both Hi and CUrqDtsV

T have
a similar structure, they can be expressed as follows:

Hi = (...B̂H,BH, B̌H...), (13)

and
CUrqDtsV

T = (...B̂CV,BCV, B̌CV...). (14)

The notation B̂H means that each column of BH is shifted
upward by rq elements. Similarly, B̌H indicates a downward
shift by rq elements. Similar notations apply to BCV. See
Figure 1 (b) and Figure 3 (a) for clarification. Hence, using
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Fig. 4. Optimal analysis filters. This figure shows F = 8 optimal filters
found for two different depths (z = �11 µm, z = 0 µm) from a maximum
of ts = 19 ⇥ 19 filters. For each depth, these filters are the 2-D version of
the 1-D filters named {vm}

F
m=1. In (a) we use a dirac Delta as the template

function ' and in (b) we use a spline. The shown singular values �m are
normalized to be between 0 and 1.

Equation (13) and (14), expression (12) reduces to the min-
imization of kBH � BCVk

2
2. Based on the compact support

assumption for v, it holds that BCV = cv
T. Therefore, c and

v should be chosen such that:

min
c,v

kBH � cv
T
k
2
2. (15)

This minimization is a rank-1 approximation easily solved
by using the singular value decomposition (SVD) of BH.
More importantly, computing the approximated forward model
CUrqDtsV

T involves only two convolutions, implying much
less computational complexity than computing the whole
model.

From Equation (15) one can infer that using this method will
result in a very coarse approximation of Hi since only a rank-
1 approximation is involved. Therefore, the following more
general approximation that keep the first F largest singular
values of BH is proposed:

Hi ⇡

FX

m=1

CmUrqDtsV
T
m. (16)

For each matrix Vm, the respective vm is a right singular
vector of BH and the cm of Cm is a left singular vector um

multiplied by the respective singular value �m: cm = �mum.
Notice that, since this approximation comes from an SVD, the
summation progressively improves the approximation of the
matrix Hi. In particular, when F equals ts, the approximation
becomes equality. We also note that Equation (16) can be
interpreted as a filter bank with F branches. Thus, for each
depth, the approximation of Hi with F terms reduces the
number of branches of the filter bank from a maximum of
ts to F (see Figure 3).

Finally, given an volumetric input with an arbitrary number
of depths D, the aforementioned rank-F approximation strat-
egy can be applied to approximate each matrix Hi for each
depth i independently.

Approximation examples. To exemplify the proposed model
simplification strategy, Figure 4 shows F = 8 optimal filters
computed using our SVD approximation for two depths. For

Fig. 5. Model simplification example. A synthetic light field was computed
from a single depth volume. In (a) we show the simulated light field image
using the standard model without any approximation. Furthermore, we show
results using our approximation method by setting F = 8 and F = 38, and
this leads to a matrix error (mean square error) of 10% in (b) and 1% in (c).
The rightmost column shows the average computational time and the error
between the approximated light field image and the ground truth. The single-
depth volume is a sample of Drosophila melanogaster Kc167 cells taken from
a publicly available library [26]. All the methods were tested in a CPU ( Intel
Core i7-6700, 16 GB RAM) using MATLAB R2018b.

these experiments, the input sampling intervals are set as
�x1 = T/N1 for both lateral axes and �z = T , while the
output sampling intervals are set to �x2 = T/N2 for both
lateral axes, where N1 = 8, N2 = 19, T = 125 µm, and the
microscope magnifies the volume by a factor of M = 25. In
part (a), we set '(x, z) to be a Dirac delta and a linear spline
in part (b). The shown filters are the equivalent 2D versions
of the filters {vm}

F
m=1 of the filter bank shown in Figure 3.

One can observe that the shape of each filter changes with the
depth. In part (a), for z = 0 µm, the filter for singular value �1

is close to a square, which means that the system averages a
region of the size of the microlens area, and projects this region
into the light field space. Furthermore, the singular value �2

is almost 0.09 times the singular value �1, which shows the
rank deficiency of the matrix BH for this depth. However,
changing the template function to a linear spline modifies the
measurement matrix of the system, as shown in Equation (9).
We observe in part (b) that the optimal filter corresponding
to �1 for z = 0 µm is not a square anymore, which shows
how the rank deficiency of the matrix BH was reduced due
to the integration along the axial dimension that occurs when
a spline is selected as a template function.

As explained previously, truncating the number of branches
of each filter bank of the model accelerates its computation. To
exemplify the utility of this approximation, we take a single-
depth volume (z = �4 µm) and simulate the forward model
using both the standard method and our approximation. We use
the same downsampling and upsampling factor ts = rq = 19
for both lateral axes. Figure 5 shows visual results for F = 8
and F = 38, which correspond to a matrix approximation
error of approximately 10% and 1%, respectively. Notice that
the number of filters F is much lower than a maximum of
ts = 19 ⇥ 19. Furthermore, for both cases, the approximated
light field is visually indistinguishable from the reference, the
error measured from the light field is less than 6% for F = 8,
and it is almost zero when F = 38. The latter is because
the system matrix is inherently low rank. Furthermore, in this

Old discretization

New discretization
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Fig. 7. Ideal reconstruction using the pseudo inverse on synthetic data. In this experiment, the ground truth volume satisfies the SIS assumption. We show two
volumes lying into 2 different subspaces as ground truth, subspace 1 (a) and subspace 2 (b). Then, we show the respective reconstruction without any prior
assumption (using ISRA) and the reconstruction using the pseudoinverse with the prior assumption. Top, we show the in-focus plane, one xz, and one yz
plane. Below, we show additional slices for different depths. All the distances are measured in µm. The volumetric data was taken from Lilium Longiflorum
Pollen [26], while the light field images were simulated from the 3D pollen volumes.

Figure 7 shows the comparison between the proposed
approach and the conventional reconstruction using ISRA.
We show both lateral and axial slices of the volume. The
reconstructed volume using the pseudoinverse and the SIS
assumption matches very accurately the ground-truth volume,
which is verified by the high peak signal to noise ratio (PSNR)
and structural similarity index measure (SSIM). Moreover, the
reconstruction does not suffer from heavy square-like artifacts
typically suffered by the standard reconstruction approach
(ISRA). Note that the volume was reconstructed at the maxi-
mum sampling density 16/T for both scenarios. However, for
scenario 1, the volumetric signal lies in a SIS with a shift
equal to 0.25 times the microlens pitch, and for scenario 2,
the volume lies in a SIS with a shift equal to 0.5 times the
microlens pitch. This experiment shows that, for the proposed
ideal scenarios, exploiting the underlying low-dimensionality
of the volume allows artifact-free reconstruction with much
higher accuracy than ISRA in terms of two metrics, SSIM
and PSNR.

B. General Scenario and Additional priors

As mentioned previously, when no prior assumption is made
about the input, the reconstruction suffers from square-like
artifacts near the plane z = 0. This is explained in work [12]
and also verified in our previous experiments. The reason is
that a solution found using the pseudoinverse of H� lies in the
row space of the matrix H� , which only contains volumes with
artifacts, due to the rank deficiency and the particular matrix
structure for this depth. Furthermore, during the volumetric
reconstruction, commonly used algorithms such as ISRA and
RL only impose mild priors (e.g., non-negativity and noise
distribution), which are insufficient to regularize the solution.
Therefore, we suggest incorporating more advanced priors as

additional regularization to enforce the solution to live in a
richer space far away from the row space of H� .

In particular, we propose two techniques for volume recon-
struction. First, we propose to solve the following optimization
problem:

min
f

kH�f � gk
2
2 + kD

n
xfk1 + kD

n
y fk1 + kD

n
z fk1

s.t. f � 0,
(19)

where f is the desired volume, g is the light field image,
and D

n
x , D

n
y and D

n
z are the n-th order derivatives along

each axis. The parameter n can be adjusted experimentally
since the derivative order does not imply too much additional
computation. Notice that if n = 1, the regularizer is an
anisotropic total variation. However, this whole optimization
is computationally demanding due to the high dimension of
matrix H� . To alleviate this issue, we propose to use our
approximation method based on SVD to compute the forward
model.

As shown in the previous section, a SIS spanned by linear
splines is able to reproduce typical structures that appear in
the LFM image of a pollen volume. Considering this, we
state the following optimization problem that exploits the
SIS assumption to impose an additional constraint on the
reconstructed volume:

min
f

kH�S'A'f � gk
2
2 + kD

n
xfk1 + kD

n
y fk1 + kD

n
z fk1

s.t. f � 0,
(20)

where matrix A' and matrix S' have been defined before.
Note that if the projection S'A' is orthogonal, the transpose
of the matrix H�S'A' satisfies:

(H�S'A')
T = (S'A')

T
H�

T = S'A'H�
T. (21)

𝒈 = 𝑯𝒇
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Fig. 7. Ideal reconstruction using the pseudo inverse on synthetic data. In this experiment, the ground truth volume satisfies the SIS assumption. We show two
volumes lying into 2 different subspaces as ground truth, subspace 1 (a) and subspace 2 (b). Then, we show the respective reconstruction without any prior
assumption (using ISRA) and the reconstruction using the pseudoinverse with the prior assumption. Top, we show the in-focus plane, one xz, and one yz
plane. Below, we show additional slices for different depths. All the distances are measured in µm. The volumetric data was taken from Lilium Longiflorum
Pollen [26], while the light field images were simulated from the 3D pollen volumes.

Figure 7 shows the comparison between the proposed
approach and the conventional reconstruction using ISRA.
We show both lateral and axial slices of the volume. The
reconstructed volume using the pseudoinverse and the SIS
assumption matches very accurately the ground-truth volume,
which is verified by the high peak signal to noise ratio (PSNR)
and structural similarity index measure (SSIM). Moreover, the
reconstruction does not suffer from heavy square-like artifacts
typically suffered by the standard reconstruction approach
(ISRA). Note that the volume was reconstructed at the maxi-
mum sampling density 16/T for both scenarios. However, for
scenario 1, the volumetric signal lies in a SIS with a shift
equal to 0.25 times the microlens pitch, and for scenario 2,
the volume lies in a SIS with a shift equal to 0.5 times the
microlens pitch. This experiment shows that, for the proposed
ideal scenarios, exploiting the underlying low-dimensionality
of the volume allows artifact-free reconstruction with much
higher accuracy than ISRA in terms of two metrics, SSIM
and PSNR.

B. General Scenario and Additional priors

As mentioned previously, when no prior assumption is made
about the input, the reconstruction suffers from square-like
artifacts near the plane z = 0. This is explained in work [12]
and also verified in our previous experiments. The reason is
that a solution found using the pseudoinverse of H� lies in the
row space of the matrix H� , which only contains volumes with
artifacts, due to the rank deficiency and the particular matrix
structure for this depth. Furthermore, during the volumetric
reconstruction, commonly used algorithms such as ISRA and
RL only impose mild priors (e.g., non-negativity and noise
distribution), which are insufficient to regularize the solution.
Therefore, we suggest incorporating more advanced priors as

additional regularization to enforce the solution to live in a
richer space far away from the row space of H� .

In particular, we propose two techniques for volume recon-
struction. First, we propose to solve the following optimization
problem:

min
f

kH�f � gk
2
2 + kD

n
xfk1 + kD

n
y fk1 + kD

n
z fk1

s.t. f � 0,
(19)

where f is the desired volume, g is the light field image,
and D

n
x , D

n
y and D

n
z are the n-th order derivatives along

each axis. The parameter n can be adjusted experimentally
since the derivative order does not imply too much additional
computation. Notice that if n = 1, the regularizer is an
anisotropic total variation. However, this whole optimization
is computationally demanding due to the high dimension of
matrix H� . To alleviate this issue, we propose to use our
approximation method based on SVD to compute the forward
model.

As shown in the previous section, a SIS spanned by linear
splines is able to reproduce typical structures that appear in
the LFM image of a pollen volume. Considering this, we
state the following optimization problem that exploits the
SIS assumption to impose an additional constraint on the
reconstructed volume:

min
f

kH�S'A'f � gk
2
2 + kD

n
xfk1 + kD

n
y fk1 + kD

n
z fk1

s.t. f � 0,
(20)

where matrix A' and matrix S' have been defined before.
Note that if the projection S'A' is orthogonal, the transpose
of the matrix H�S'A' satisfies:

(H�S'A')
T = (S'A')

T
H�

T = S'A'H�
T. (21)
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Fig. 7. Ideal reconstruction using the pseudo inverse on synthetic data. In this experiment, the ground truth volume satisfies the SIS assumption. We show two
volumes lying into 2 different subspaces as ground truth, subspace 1 (a) and subspace 2 (b). Then, we show the respective reconstruction without any prior
assumption (using ISRA) and the reconstruction using the pseudoinverse with the prior assumption. Top, we show the in-focus plane, one xz, and one yz
plane. Below, we show additional slices for different depths. All the distances are measured in µm. The volumetric data was taken from Lilium Longiflorum
Pollen [26], while the light field images were simulated from the 3D pollen volumes.

Figure 7 shows the comparison between the proposed
approach and the conventional reconstruction using ISRA.
We show both lateral and axial slices of the volume. The
reconstructed volume using the pseudoinverse and the SIS
assumption matches very accurately the ground-truth volume,
which is verified by the high peak signal to noise ratio (PSNR)
and structural similarity index measure (SSIM). Moreover, the
reconstruction does not suffer from heavy square-like artifacts
typically suffered by the standard reconstruction approach
(ISRA). Note that the volume was reconstructed at the maxi-
mum sampling density 16/T for both scenarios. However, for
scenario 1, the volumetric signal lies in a SIS with a shift
equal to 0.25 times the microlens pitch, and for scenario 2,
the volume lies in a SIS with a shift equal to 0.5 times the
microlens pitch. This experiment shows that, for the proposed
ideal scenarios, exploiting the underlying low-dimensionality
of the volume allows artifact-free reconstruction with much
higher accuracy than ISRA in terms of two metrics, SSIM
and PSNR.

B. General Scenario and Additional priors

As mentioned previously, when no prior assumption is made
about the input, the reconstruction suffers from square-like
artifacts near the plane z = 0. This is explained in work [12]
and also verified in our previous experiments. The reason is
that a solution found using the pseudoinverse of H� lies in the
row space of the matrix H� , which only contains volumes with
artifacts, due to the rank deficiency and the particular matrix
structure for this depth. Furthermore, during the volumetric
reconstruction, commonly used algorithms such as ISRA and
RL only impose mild priors (e.g., non-negativity and noise
distribution), which are insufficient to regularize the solution.
Therefore, we suggest incorporating more advanced priors as

additional regularization to enforce the solution to live in a
richer space far away from the row space of H� .

In particular, we propose two techniques for volume recon-
struction. First, we propose to solve the following optimization
problem:

min
f

kH�f � gk
2
2 + kD

n
xfk1 + kD

n
y fk1 + kD

n
z fk1

s.t. f � 0,
(19)

where f is the desired volume, g is the light field image,
and D

n
x , D

n
y and D

n
z are the n-th order derivatives along

each axis. The parameter n can be adjusted experimentally
since the derivative order does not imply too much additional
computation. Notice that if n = 1, the regularizer is an
anisotropic total variation. However, this whole optimization
is computationally demanding due to the high dimension of
matrix H� . To alleviate this issue, we propose to use our
approximation method based on SVD to compute the forward
model.

As shown in the previous section, a SIS spanned by linear
splines is able to reproduce typical structures that appear in
the LFM image of a pollen volume. Considering this, we
state the following optimization problem that exploits the
SIS assumption to impose an additional constraint on the
reconstructed volume:

min
f

kH�S'A'f � gk
2
2 + kD

n
xfk1 + kD

n
y fk1 + kD

n
z fk1

s.t. f � 0,
(20)

where matrix A' and matrix S' have been defined before.
Note that if the projection S'A' is orthogonal, the transpose
of the matrix H�S'A' satisfies:

(H�S'A')
T = (S'A')

T
H�

T = S'A'H�
T. (21)
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Fig. 8. Reconstruction using synthetic light field data. Top, we show the in-focus plane, one xz, and one yz slice of the ground truth volume, the reconstruction
using ISRA, ISRA with total variation [6], artifact-free (AF) ISRA [19], ADMM without SIS assumption, and ADMM with SIS assumption. All distances are
measured in µm. Furthermore, below, we show additional slices for different depths. The shown PSNR and SSIM correspond to the whole volume. In this
case, the ground truth volume does not satisfy the SIS assumption. We use the Lilium Longiflorum Pollen [26] dataset in (a), and a brain slice taken from a
GFP tagged triple transgenic mouse line in (b). The light field images were created synthetically from these volumes.

achieve artifact-free reconstruction, while the standard ISRA
and the ISRA with total-variation [6] reconstructs squares near
the plane z = 0, as shown in Figures 8 (b). The artifact-free
ISRA [19] removes squares, but in this case the solution is
distorted. Quantitatively, as shown in Table I, the resulting
PSNR and SSIM using the SIS assumption are slightly higher
than those without the SIS assumption. Both ADMM methods
outperform ISRA approaches in terms of PSNR and SSIM.

TABLE I
PERFORMANCE OF MODEL-BASED METHODS ON SYNTHETIC DATA.

PSNR SSIM Time/Iteration (s)
Pollen

ISRA [16] 26.05 0.54 470
ISRA (Total Variation) [6] 26.18 0.53 520
ISRA (Artifact-free) [19] 25.10 0.54 473

ADMM 27.22 0.65 79
ADMM (SIS) 27.70 0.66 32

Neurons
ISRA [16] 30.81 0.94 471

ISRA (Total Variation) [6] 28.38 0.91 530
ISRA (Artifact-free) [19] 32.20 0.92 473

ADMM 33.83 0.96 68
ADMM (SIS) 39.67 0.98 26

Furthermore, for the given settings, the ADMM methods
are faster than the conventional methods. Each iteration of all
the ISRA methods takes more than 470 seconds on average,
whereas the ADMM without SIS prior takes 73 seconds,
and ADMM with the SIS prior takes 29 seconds, as shown
in Table I. All the methods were tested in a CPU ( Intel Core

i7-6700, 16 GB RAM) using MATLAB R2018b.

B. Real Data

In this section, we evaluate the proposed approaches using
real light field data. The experimental settings we use for
the ADMM algorithms are the same as those in the previ-
ous section. The size of the real input light field image is
2033⇥ 2033 pixels. From this single image, we reconstruct a
volume of size 1712 ⇥ 1712 ⇥ 96 voxels covering the depth
range �15µm < z < 15µm.

The light field image is captured from a 50-µm-thick brain
slice from a green fluorescent protein (GFP) tagged triple
transgenic mouse line. We show the light field image in
Figure 9 (a). We also capture the corresponding volume with
the microscope in wide-field modality by scanning it along
the z-axis without the microlens array. This wide-field image
stack provides an approximation of the target volume we aim
to reconstruct. The in-focus plane, together with two axial
slices, are shown in Figure 9 (a). Furthermore, different lateral
slices corresponding to seven depths are shown in Figure 9 (b).
Notice that the non-ideal optical system and the specimen
type cause increased noise in the images. To avoid noise
amplification, the number of iterations used for reconstruction
must be chosen properly. As proposed in previous works [6],
[19], [16], a typical empirical number of iterations used for
ISRA is between 8 and 10. We fixed this value to 10, and
we experimentally found that 24 iterations are enough for our
ADMM methods.
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Fig. 8. Reconstruction using synthetic light field data. Top, we show the in-focus plane, one xz, and one yz slice of the ground truth volume, the reconstruction
using ISRA, ISRA with total variation [6], artifact-free (AF) ISRA [19], ADMM without SIS assumption, and ADMM with SIS assumption. All distances are
measured in µm. Furthermore, below, we show additional slices for different depths. The shown PSNR and SSIM correspond to the whole volume. In this
case, the ground truth volume does not satisfy the SIS assumption. We use the Lilium Longiflorum Pollen [26] dataset in (a), and a brain slice taken from a
GFP tagged triple transgenic mouse line in (b). The light field images were created synthetically from these volumes.

achieve artifact-free reconstruction, while the standard ISRA
and the ISRA with total-variation [6] reconstructs squares near
the plane z = 0, as shown in Figures 8 (b). The artifact-free
ISRA [19] removes squares, but in this case the solution is
distorted. Quantitatively, as shown in Table I, the resulting
PSNR and SSIM using the SIS assumption are slightly higher
than those without the SIS assumption. Both ADMM methods
outperform ISRA approaches in terms of PSNR and SSIM.

TABLE I
PERFORMANCE OF MODEL-BASED METHODS ON SYNTHETIC DATA.

PSNR SSIM Time/Iteration (s)
Pollen

ISRA [16] 26.05 0.54 470
ISRA (Total Variation) [6] 26.18 0.53 520
ISRA (Artifact-free) [19] 25.10 0.54 473

ADMM 27.22 0.65 79
ADMM (SIS) 27.70 0.66 32

Neurons
ISRA [16] 30.81 0.94 471

ISRA (Total Variation) [6] 28.38 0.91 530
ISRA (Artifact-free) [19] 32.20 0.92 473

ADMM 33.83 0.96 68
ADMM (SIS) 39.67 0.98 26

Furthermore, for the given settings, the ADMM methods
are faster than the conventional methods. Each iteration of all
the ISRA methods takes more than 470 seconds on average,
whereas the ADMM without SIS prior takes 73 seconds,
and ADMM with the SIS prior takes 29 seconds, as shown
in Table I. All the methods were tested in a CPU ( Intel Core

i7-6700, 16 GB RAM) using MATLAB R2018b.

B. Real Data

In this section, we evaluate the proposed approaches using
real light field data. The experimental settings we use for
the ADMM algorithms are the same as those in the previ-
ous section. The size of the real input light field image is
2033⇥ 2033 pixels. From this single image, we reconstruct a
volume of size 1712 ⇥ 1712 ⇥ 96 voxels covering the depth
range �15µm < z < 15µm.

The light field image is captured from a 50-µm-thick brain
slice from a green fluorescent protein (GFP) tagged triple
transgenic mouse line. We show the light field image in
Figure 9 (a). We also capture the corresponding volume with
the microscope in wide-field modality by scanning it along
the z-axis without the microlens array. This wide-field image
stack provides an approximation of the target volume we aim
to reconstruct. The in-focus plane, together with two axial
slices, are shown in Figure 9 (a). Furthermore, different lateral
slices corresponding to seven depths are shown in Figure 9 (b).
Notice that the non-ideal optical system and the specimen
type cause increased noise in the images. To avoid noise
amplification, the number of iterations used for reconstruction
must be chosen properly. As proposed in previous works [6],
[19], [16], a typical empirical number of iterations used for
ISRA is between 8 and 10. We fixed this value to 10, and
we experimentally found that 24 iterations are enough for our
ADMM methods.
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(a) (b)

Fig. 7. Ideal reconstruction using the pseudo inverse on synthetic data. In this experiment, the ground truth volume satisfies the SIS assumption. We show two
volumes lying into 2 different subspaces as ground truth, subspace 1 (a) and subspace 2 (b). Then, we show the respective reconstruction without any prior
assumption (using ISRA) and the reconstruction using the pseudoinverse with the prior assumption. Top, we show the in-focus plane, one xz, and one yz
plane. Below, we show additional slices for different depths. All the distances are measured in µm. The volumetric data was taken from Lilium Longiflorum
Pollen [26], while the light field images were simulated from the 3D pollen volumes.

Figure 7 shows the comparison between the proposed
approach and the conventional reconstruction using ISRA.
We show both lateral and axial slices of the volume. The
reconstructed volume using the pseudoinverse and the SIS
assumption matches very accurately the ground-truth volume,
which is verified by the high peak signal to noise ratio (PSNR)
and structural similarity index measure (SSIM). Moreover, the
reconstruction does not suffer from heavy square-like artifacts
typically suffered by the standard reconstruction approach
(ISRA). Note that the volume was reconstructed at the maxi-
mum sampling density 16/T for both scenarios. However, for
scenario 1, the volumetric signal lies in a SIS with a shift
equal to 0.25 times the microlens pitch, and for scenario 2,
the volume lies in a SIS with a shift equal to 0.5 times the
microlens pitch. This experiment shows that, for the proposed
ideal scenarios, exploiting the underlying low-dimensionality
of the volume allows artifact-free reconstruction with much
higher accuracy than ISRA in terms of two metrics, SSIM
and PSNR.

B. General Scenario and Additional priors

As mentioned previously, when no prior assumption is made
about the input, the reconstruction suffers from square-like
artifacts near the plane z = 0. This is explained in work [12]
and also verified in our previous experiments. The reason is
that a solution found using the pseudoinverse of H� lies in the
row space of the matrix H� , which only contains volumes with
artifacts, due to the rank deficiency and the particular matrix
structure for this depth. Furthermore, during the volumetric
reconstruction, commonly used algorithms such as ISRA and
RL only impose mild priors (e.g., non-negativity and noise
distribution), which are insufficient to regularize the solution.
Therefore, we suggest incorporating more advanced priors as

additional regularization to enforce the solution to live in a
richer space far away from the row space of H� .

In particular, we propose two techniques for volume recon-
struction. First, we propose to solve the following optimization
problem:

min
f

kH�f � gk
2
2 + kD

n
xfk1 + kD

n
y fk1 + kD

n
z fk1

s.t. f � 0,
(19)

where f is the desired volume, g is the light field image,
and D

n
x , D

n
y and D

n
z are the n-th order derivatives along

each axis. The parameter n can be adjusted experimentally
since the derivative order does not imply too much additional
computation. Notice that if n = 1, the regularizer is an
anisotropic total variation. However, this whole optimization
is computationally demanding due to the high dimension of
matrix H� . To alleviate this issue, we propose to use our
approximation method based on SVD to compute the forward
model.

As shown in the previous section, a SIS spanned by linear
splines is able to reproduce typical structures that appear in
the LFM image of a pollen volume. Considering this, we
state the following optimization problem that exploits the
SIS assumption to impose an additional constraint on the
reconstructed volume:

min
f

kH�S'A'f � gk
2
2 + kD

n
xfk1 + kD

n
y fk1 + kD

n
z fk1

s.t. f � 0,
(20)

where matrix A' and matrix S' have been defined before.
Note that if the projection S'A' is orthogonal, the transpose
of the matrix H�S'A' satisfies:

(H�S'A')
T = (S'A')

T
H�

T = S'A'H�
T. (21)
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Fig. 9. Reconstruction using real light field data from a brain slice (50 µm thick) captured from a GFP tagged triple transgenic mouse line. In part (a),
from left to right, we show the original light field image; then, for comparison, we show a wide-field image taken without the microlens array; finally, the
reconstruction using ISRA, our ADMM without and with the SIS assumption. We show the in-focus plane and two xz and yz slices below and to the left of
each lateral slice, respectively. In part (b), we show additional slices for different depths. All the distances are measured in µm. The settings used to capture
both the light field image, and the wide-field image are specified in Section VI.

We compare the conventional method ISRA with the
ADMM methods with and without SIS prior. In this case,
we only present visual results since there is no ground truth
available. As shown in Figure 9, both ADMM methods give
a better reconstruction performance than ISRA in terms of
artifacts reduction. In particular, these artifacts are strongly
present at z = 0 µm, but also at other slices close to the
in-focus plane, such as z = 3 µm and z = �3 µm. In
general, comparable performance is achieved for depths far
from z = 0 µm, but artifacts near the native object plane are
clearly removed when using the proposed ADMM methods.

For the second experiment, we use a light field image
captured from acute mouse brain slices expressing the cal-
cium indicator NIR-GECO2G. In this case, we changed the
wavelength of the device to 660 nm. Furthermore, the size of
the input light field is 1881 ⇥ 1881 pixels. From this single
image, we reconstruct a volume of size 1584 ⇥ 1584 ⇥ 96
voxels covering the depth range �30µm < z < 30µm.

Figure 10 (a) shows the light field image and the corre-
sponding wide-field image stack (in-focus plane with two axial
slices) captured from the same volume. Furthermore, different
lateral slices corresponding to seven depths of the captured
volume are shown in Figure 10 (b). In this case, we find similar
results as in the previous case. We observe that both ADMM
methods behave similarly but remarkably remove artifacts near
the native object plane, specifically at depths �2, 0 and 2 µm.
However, ISRA produces strong square-like artifacts in these
planes.

Finally, we show how our method adapts to different types
of data by performing reconstruction using the light field data
provided in the work [23]. For this experiment, part of the pre-
vious microscope settings is modified. According to [23], the
wavelength is set to 488 nm, the numerical aperture is 0.5, the
magnification is 22.5, the microlens focal length is 3125 µm,
and the tube lens focal length is 0.3 m. From a single light
field of size 931⇥931 pixels, we reconstruct a volume of size



Inspired by LISTA1, we “unfold” this iteration to obtain a deep network 

1Gregor Karol and LeCunYann, “Learning fast approximations of sparse coding ”, Proceedings of the 27th International Conference 
on International Conference on Machine Learning, 2010
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On-going: Learning-based Reconstruction

• Combines the light-field wave-optics model with Learned Iterative Shrinkage-Thresholding Algorithm 
(LISTA)

• Un-paired data calls for adversarial network

(a) LISTA-net LFM combines deep learning with waves-optics light-field model to achieve fast high-resolution 3D
reconstruction using LFM data. Taken from [24].

(b) CISTA-net LFM combines deep learning with phase-space convolutional sparse coding model to achieve fast
robust neuron localization using LFM data. Taken from [25].

Fig. 8: Model-inspired data-driven approaches for light-field imaging. The architectures of these networks are de-
signed systematically by unrolling specific iterative optimization methods that are developed according to specific
properties of the models. The network parameters are learned from a training dataset. In this way, the designed
networks naturally inherit domain knowledge and also learn new features from the data, demonstrating better inter-
pretability and performance.

repetitively to obtain a 3D volume at the output from the original light-field. It provides an effective way to incorpo-
rate physics knowledge into the network architecture, as well as improve its interpretability. The network designed
according to a physics model has other appealing advantages such as improved computational efficiency. This is
due to the fact that the number of views can be significantly reduced to further reduce the computational complexity
according to the simplified light-field model presented in [14]. Furthermore, inspired by Wasserstein Generative
Adversarial Networks (WGANs), an adversarial training strategy is adopted, which makes it possible to train the
network under realistic conditions such as lack of labelled data and noisy measurements, as only unlabelled data is
needed to compute a properly designed adversarial loss. Fig. 9 shows reconstructed neurons compared with ISRA,
an improved version of R-L deconvolution method. It demonstrates that the reconstruction from LISTA-net LFM
reveals details such as dendrites and axons more clearly than ISRA. In addition, square-shaped artifacts at the focal
plane (z = 0 um) are reduced effectively. Blurring and scattering at the background is also suppressed and alleviated
significantly, making the reconstruction visually appealing.

CISTA-net LFM. Finally, we note that in [25] the authors proposed a model-inspired deep learning approach to per-
form fast and robust 3D localization of neurons using light-field microscopy images. This is achieved by developing
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Learning-based Reconstruction- Results

Fig. 9: Reconstructed neurons from a LFM image using the improved R-L deconvolution method ISRA (top) and
data-driven approach — LISTA-net LFM [24] (bottom). It shows that the reconstruction from [24] reveals details
more clearly and with less artifacts, as well as suppresses blurring and scattering at background.

a deep network that efficiently solves a convolutional sparse coding (CSC) problem, shown in (9), to map Epipolar
Plane Images (EPI) in phase-space to corresponding sparse codes that are associated with the 3D locations of target
neurons.

min
{zm}

1
2

����X�
MP

m=1
dm ⇤ zm

����
2

2

+ �

MP
m=1

kzmk1 (9)

Here, X denotes the EPI constructed from an observed LFM image, {zm}Mm=1 denotes a series of sparse codes with
respect to a predefined EPI dictionary {dm}Mm=1 with M for the number depths to be covered. k · k2 is the `2 norm
and k · k1 is the `1 norm. The network architecture, shown in Fig. 8, is designed systematically by unrolling the
convolutional Iterative Shrinkage and Thresholding Algorithm (CISTA) whose iteration step is formulated as (10)
or (11) in matrix form.

z(i+1)
k = T�

 
z(i)k � �d>

k ⇤
MX

m=1

dm ⇤ z(i)m + d>
k ⇤X

!
(10)

Z(i+1) = T�
⇣
Z(i) � �D> ~

X
D~ Z(i) +D> ~X

⌘
(11)

where the superscript (i) denotes the iteration index, and � is the step size. T�(·) is the element-wise soft-thresholding
function, defined as T�(x) = sign(x) · (|x| � �)+ with an appropriate � � 0, which is used to enforce sparsity on
sparse codes. Dictionary D consists of EPI elements {dm}Mm=1 and D> is the transposed version of D. Symbol ~
denotes convolution along the first and second dimension, i.e. spatio-angular dimension, and the symbol

P
denotes

summation of convolution results along the third dimension.
Referring to (11), each iteration step of CISTA gives one layer of the network, formulated as:

Z(i+1) = ReLU

⇣
Z(i) � S(i) ~ Z(i) +W(i) ~X+ �

⌘
(12)

where, S(i) and W(i) in i-th layer play the role of D> ~PD and D>, respectively. However, they are trainable
filters and will be learned from EPI dataset. ReLU (i.e. Rectified Linear Unit) with trainable non-negative bias �

play the role of the soft-thresholding.
The complete network is formed by concatenating multiple such layers. Therefore, forward passing through the

network is equivalent to executing the CISTA algorithm a finite number of times. Note that the network contains
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Fig. 11. Scattering case. (a) Raw LFM images of a neuronal cell (from a genetically encoded mouse) at different depths away from the focal plane. The pattern
is expanded when the neuronal cell is far away from the focus plane. Due to scattering and blurring, the cell images have a bright background and those for deeper
positions have a weaker intensity contrast, thus making post-processing challenging. In each raw LFM image, we can see an array of small round spots which are
the back-aperture of lenslets recorded in micro-images. (b) Sub-aperture image arrays for different depths. After a raw LFM image is converted into the standard
4D format, pixels can be re-arranged into sub-aperture images. Each sub-aperture image is composed of pixels that share the same relative position (i, j) in behind
each lenslet, indicating a specific view. All the sub-aperture images are tiled into an array with k-l as the inside axes, and i-j as the outside axes. (c) The separated
foreground and background of a sub-aperture image array via matrix factorization. (d) From a column of the sub-aperture image array, it is noticed that the positions
of the bright area are shifting, which means the view direction is changing vertically. Such view changing accounts for the slope of epipolar lines in the EPIs. The
corresponding purified versions do not suffer from scattering as the background has been effectively removed by matrix factorization. (f) Constructed j − l space
EPIs and corresponding purified versions. Best seen by zooming on a computer screen.

problem (3):

min
z

1

2
‖Y −

M∑

m=1

dm ∗ zm‖22 + β
M∑

m=1

‖zm‖1 (3)

where,dm ∈ Rn(n < N) is them-th atom of the EPI dictionary
{d1, . . . ,dM} where each atom represents a vectorized EPI
containing a single epipolar line associated with a specific depth.
Moreover, zm ∈ RN is the corresponding coefficient map.

To solve Problem (3) efficiently, we transform the variables
into the Fourier domain so that the convolutional operation in the

original domain becomes element-wise multiplication, similar
to [41]–[45]. Then, by exploiting the Parseval’s theorem, we
obtain:

min
zm

1

2
‖Ŷ −

M∑

m=1

d̂m % ẑm‖22 + β
M∑

m=1

‖zm‖1 (4)

where % is element-wise product, i.e. Hadamard product, which
corresponds to convolution in the original spatial domain. Here,
Ŷ = F(Y) ∈ RN , ẑm = F(zm) ∈ RN , d̂m = F(dm) ∈ RN ,
and F(·) indicates the Fourier transform operator.
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On-going work – CISTA for localization 

• The convolutional sparse model leads naturally to an iterative optimization strategy (ISTA) that can 
be unfolded

• Training based on synthetic data obtained using the Broxton forward model

Fig. 2. Proposed CISTA-net. An input EPI X containing two sources is mapped to sparse codes Z whose support indicates
depths. Cross-entropy loss between the estimation Z and the label Z? is computed and back-propagated to update parameters.

added in each layer facilitates information propagation from
the first layer directly to each hidden layer, thereby allevi-
ating information loss. This structure reveals certain resem-
blance to dense connectivity module used in DenseNet [22],
even though not each layer is receiving a connection from
all preceding layers. Even though some of these architecture
modules have been used in modern neural networks, we here
provide a new and interesting perspective to elaborate how
they can naturally derive from a well-designed model and cor-
responding iterative method, rather than pure intuition com-
monly used in general network design.

Rather than sticking to Model (3) rigidly, we also employ
some customized modifications to further enhance the capa-
bility of the network. For example, the size of filters S(i) and
W(i) increases across different layers so that the receptive
field increases gradually to facilitate capture of both local
details and global structure. In addition, a fully-connected
layer followed by sigmoid activation is added after the Glob-
alMaxPooling layer to perform non-linear transformation.
Such slight departures from the original convolutional ISTA
algorithm enable extended representation capability of the
network.

3. EXPERIMENT
In this section, we evaluate the performance of CISTA-net on
the 3D localization task. We also compare our approach with
the phase-space based method (Phase-Space for short) [6, 8]
and convolutional sparse coding based method (CSC for
short) [9] on light-field microscopy data obtained from scat-
tering specimens – genetically encoded fluorophore in mouse
brain tissues, as shown in Fig. 5 (a).

The raw light-field microscopy images were captured by
systematically changing the axial distance between the speci-
mens and the objective lens of LFM as in [9]. Therefore, each
light-field microscopy image captures a 3D volume at a speci-
fied depth. All the experiments were conducted in a computer
equipped with an Intel hexa-core i7-8700U CPU@3.20GHz
with 28GB of memory and a NVIDIA GTX 1080 Ti GPU.

Training settings. Figure 3 shows how we construct the la-
belled training datasets. Since the designed CISTA-net is ex-
pected to output sparse codes where the positions of non-zero
elements (i.e. support) indicate the depths corresponding to

Fig. 3. Illustration to the construction of soft-labels.

Fig. 4. Convergence curve of training and validation loss.

input EPIs, it needs to be trained on labelled data in order
to learn the mapping from an input EPI to the corresponding
sparse codes. However, coefficient values in sparse codes are
unknown. To handle this issue, we treat the task as a multi-
class, multi-label classification task where the support of the
sparse codes indicates target classes/categories while the co-
efficient values indicate probability or confidence of the in-
put signal falling into each class.1 In this way, we only need
weakly annotated sparse codes with roughly estimated coef-
ficient values. In addition, we found that EPIs corresponding
to adjacent depths tend to have similar patterns, and thus ex-
hibit high coherence and lead to group sparsity in CSC. Based
on this observation, we modified the sparse codes by con-
volving them with a Gaussian kernel so that the groundtruth
non-zero support is extended to neighbouring areas that cover
adjacent depths. We call the support-extended sparse codes
"soft-labels" in comparison with the sparse codes with exact
support, namely "hard-labels". Soft-labels give some training
benefits by incorporating data correlation as guidance infor-
mation and enforce group sparsity for the output of network.
Since our task is regarded as a multi-class, multi-label classi-
fication task, the loss function is set to be binary cross-entropy

1Note, if the task is treated as a regression task, the output of the network
will be a number that denotes the continuous depth, thus it can not handle
the case with multiple neurons in the region of interest as this gives multiple
lines in an EPI.
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• Light field systems can have an impact in neuroscience because of the crucial 
trade-off between resolution in time and space

• Light field microscopy brings unique challenges e.g., wave optics
• In neuroscience applications, data is sparse and occlusion is negligible
• Understanding the physics of the problem is crucial
• Learning will labelled data is challenging   

Conclusions   



Thank you!
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