

Light Field Image Coding Using VVC standard and View Synthesis based on Dual Discriminator GAN

N. Bakir, W. Hamidouche, S. Fezza, K. Samrouth and O. Déforges

CLIM 2 workshop – INRIA Rennes

September 30th 2021

2

Outline

- Context & challenges
- Related work
- Proposed solution
- Experimental Results
- Conclusion

3

□ Augmented Reality (AR) & Virtual Reality (VR) applications

N. Bakir, W. Hamidouche et al., Light Field Image Coding Using VVC standard and View Synthesis based on Dual Discriminator GAN, IEEE T. on Multimedia 2021.

Definition of Light Field

Seven dimensional function $L(x, y, z, \theta, \varphi, \lambda, t)$

Definition of Light Field

- > Seven dimensional function $L(x, y, z, \theta, \varphi, \lambda, t)$
- Four dimensional function with two parallel planes L(u, v, t, s)

Light Field image acquisition and representation

5

□ Advantages of Light Field technology

- Refocusing capability after capture
- Change of perspective (view point)
- Field display for VR

6

□ Limitations of Light Field technology

- Very large amount of data for storage and transmission
- High computational processing and energy
- Highly redundant data

1 LF image Lytro Illum Camera requires 1.5 Gbits

Objective

> Propose an efficient and low complexity coding solution for LF images

Outline

- Context & challenges
- Related work
- Proposed solution
- Experimental Results
- Conclusion

□ State-of-the-art of Light Field Image Compression

LF Compression with Homography-based Low Rank Approximation (HLRA) [Jiang et al. 2017]

- Based joint optimization of multiple homographies and LRA¹
- Using homography in order to reduce the error produced by LRA between SAI²

Low Rank Approximation
Sub-Aperture Images

Overview diagram of the HLRA method.

□ State-of-the-art of Light Field Image Compression [Lui et al. 2016]

Pseudo video coding approach

LF image coding via linear approximation [Zhao et al. 2017]

 $S_R \ \epsilon \ \mathbb{R}^{mn \ x \ M}$, consists of M vectorized references views in S_A

 $\boldsymbol{s_b}$ is the target view to be recovered

Linear Approximation (LA) Coding Scheme [Zhao et al. 2017]

Outline

- Context & challenges
- Proposed solution
- Experimental Results
- Conclusion

N. Bakir, W. Hamidouche et al., Light Field Image Coding Using VVC standard and View Synthesis based on Dual Discriminator GAN, IEEE T. on Multimedia 2021.

D2GAN Loss function formulation

$$\min_{G} \max_{D1,D2} \mathcal{L} (G, D1, D2)$$

Three player minimax optimization game:

- > Discriminators maximizing its reward V(G, D1, D2)
- Generator minimizing Discriminators reward (or maximize its loss)

$$\mathcal{L}(G, D_1, D_2) = \alpha \mathbb{E}_{x \sim P_{data}} \left[\log D_1(\mathbf{x}) \right] + \mathbb{E}_{z \sim P_z} \left[-D_1(\mathsf{G}(z)) \right]$$
$$+ \mathbb{E}_{x \sim P_{data}} \left[-D_2(\mathbf{x}) \right] + \beta \mathbb{E}_{z \sim P_z} \left[\log D_2(\mathsf{G}(z)) \right]$$

□ Versatile Video Coding (VVC) hierarchical coding architecture

Hierarchical prediction structure in VVC - One GOP is shown.

□ The proposed strategy

□ Rate distortion optimization

Algorithm 2: Algorithm of the RDO between VVC and D2GAN **Require:** $\mathcal{J} \leftarrow \{ \forall m, \forall v \in TL \# [3 \text{ or } 4], \mathcal{J} = D + \lambda R \}$ m: metod {VVC, D2GAN} for all $v \in TL \# 4$ do if $\mathcal{J}(VVC) < \mathcal{J}(D2GAN)$ then Encode v by VVC $flag(v) \leftarrow false$ else generate v by D2GAN $J = D + \lambda R$ $flag(v) \leftarrow true$ end if end for for all $v \in TL\#3$ do if $\mathcal{J}(VVC) < \mathcal{J}(D2GAN)$ then Encode v by VVC $flag(v) \leftarrow false$ else {flag(previous(v)) and flag(next(v))} generate v by D2GAN $flag(v) \leftarrow true$ end if end for

Proposed Solution (7/8)

Quality Enhancement Module: MV-QENet

3

MV-QENet performance

N. Bakir, W. Hamidouche et al., Light Field Image Coding Using VVC standard and View Synthesis based on Dual Discriminator GAN, IEEE T. on Multimedia 2021.

Outline

- Context & challenges
- Proposed solution
- Experimental Results
- Conclusion

Experimental Results

□ For the training phase, 140 LF images (8x8 views) have been selected:

- > EPFL dataset (70 images), Stanford university LF dataset (50 images), HCI dataset(20 images).
- Each sub aperture are splitting into patches (60x60 pix).
- Trained with more than 150,000 patches.

D 2D-AN Training Parameters

Mini-batches size	10
ADAM solver	$\beta_1 = 0.9, \beta_2 = 0.999$ and $\alpha_{Adam} = 0.0001$
Learning rate	0.0001
Activation function	Relu
Regularization coefficients of D1 and D2	α reg = 0.2 and β reg = 0.2

9 testing LF images

> EPFL dataset (6 images), Stanford university LF dataset (1 images), HCl dataset(2 images).

Central perspective view from each LF image used in the test

Experimental Results

RD curves of the 5 considered solutions for the 6 LF images

Experimental Results

TOP-2 TOP-1

24

□ BD-BR and BD-PSNR gains calculated against anchor method described in [Lui at al. 2016].

	BD-BR versus [Lui et al. 2016]									
Image	VVC-AII		[Jia et al. 2018]		[Hou et al. 2019]		Ours w/o QE		Ours	
	BD-BR	BD- PSNR	BD-BR	BD- PSNR	BD-BR	BD- PSNR	BD-BR	BD- PSNR	BD-BR	BD- PSNR
Bikes	-11.7%	0.72	-6.3%	0.48	-6.9%	0.49	-22.4%	0.96	-31.56%	1.19
DangerDeMort	-7.8%	0.22	-10.8%	0.28	-8.7%	0.26	-16.5%	0.4	-25.69%	0.78
Flowers	-12.3%	0.56	-11.9%	0.54	-16.2%	0.72	-16.6%	0.74	-23.66%	1.03
Ankylosaurus Dip1	-13.2%	0.44	-14.9%	-0.72	-12.3%	0.39	-18.0%	0.57	-31.17%	1.15
Aloe	-26.4%	0.85	-9.1%	0.31	-2.46%	-0.12	-42.3%	1.23	-56.59%	1.84
StonePillarsOutside	-18.3%	0.61	-15.1%	0.52	-11.9%	0.28	-35.6%	0.98	-49.76%	1.42
Bedroom	-5.3%	0.46	-4.0%	0.32	-2.3%	0.18	-9.5%	0.85	-24.78%	2.11
Desktop	-19.6%	0.32	-7.5%	0.11	44.1%	-0.61	-26.3%	0.45	-40.58%	0.79
Herbs	-26.2%	1.14	-4.4%	-0.11	6.9%	-0.21	-29.8%	1.32	-42.25%	1.85
Average	-15.6%	0.59	-8.3%	0.35	-0.54%	0.15	-24.1%	0.83	-36.22%	1.35

□ Visual comparison LF images decoded by different codecs

[Liu et al.] y-psnr: 39.15

Our w/o QE **y-psnr**: 39.86 **y-psnr**: 40.08

@0.032 bpp

VVC-All

@0.021 bpp

□ Complexity analysis : run time on CPU (Inter i9-7900X 3.3GHz) & GPU (NVDIA TITAN XP)

	Encoder run time (second)							
	VVC-AII	[Jia et al. 2018]	[Hou et al. 2019]	Ours				
QP	CPU	GPU	CPU	CPU	GPU			
22	259	450	6028	559	449			
26	152	350	6028	452	342			
32	101	220	6028	401	291			
37	66	142	6028	366	256			
Average	145	291	6028	445	335			
	Decoder run time (second)							
Average	4	53	583	124 to 333	94 to 285			

Outline

- Context & challenges
- Proposed solution
- Experimental Results
- Conclusion

Contributions

- New D2GAN model for LF image Synthesis
- Efficient coding solution outperforming the state-of-the-art learning based coding approach
- Open Questions
 - Encode or Synthetize ?
 - What about the **D**epth Information ?
 - Subjective Evaluation ?

Visual illustration and web page

https://naderbakir79.github.io/LFD2GAN.html

Thank you for your attention

References

[Schiopu et al. 2017] Schiopu et al. Lossless compression of subaperture images using context modeling, 2017 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON) 2017.

[Jiang et al. 2017] Jiang et al. Light Field Compression with Homography-based Low Rank Approximation, IEEE Journal of Selected Topics in Signal Processing (J-STSP), vol. 11, No. 7, pp. 1132-1145, Oct. 2017

[Liu et al. 2016] Liu et al., Pseudo-Sequence-Based Light Field Image Compression, in 2016 IEEE International Conference on Multimedia Expo Workshops (ICMEW), July 2016, pp. 1–4.

[Li et al. 2017] Li et al., Pseudo-Sequence-Based 2-D Hierarchical Coding Structure for Light-Field Image Compression, in IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 7, pp. 1107-1119, Oct. 2017.

[Zhao et al. 2016] Zhao et al., Light field image coding with hybrid scan order. pp 1-4. VCIP. 2016.

[Kalantari et al. 2016] Kalantari et al., "Learning-based view synthesis for light field cameras," ACM Trans. Graph., vol. 35, no. 6, pp. 193:1-193:10, Nov. 2016. [Zhao et al. 2017] Zhao et al., Light field image coding via linear approximation prior, in Proc. IEEE International Conference on Image Processing (ICIP), Sept 2017.

[Jia et al. 2018] Jia et al., Light Field Image Compression Using Generative Adversarial Network Based View Synthesis, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, pp. 1–1, 2018.

[Sullivan et al. 1998] Sullivan et al., "Rate-distortion optimization for video compression", IEEE signal processing magazine, 1998.

[Hou et al. 2019] Hou et al., Light Field Image Compression Based on Bi-Level View Compensation With Rate-Distortion Optimization, in IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 2, pp. 517-530, Feb. 2019.

