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Abstract

This paper presents a novel approach for light field editing. The problem of propagat-
ing an edit from a single view to the remaining light field is solved by a structure tensor
driven diffusion on the epipolar plane images. The proposed method is shown to be use-
ful for two applications: light field inpainting and recolorization. While the light field
recolorization is obtained with a straightforward diffusion, the inpainting application is
particularly challenging, as the structure tensors accounting for disparities are unknown
under the occluding mask. We address this issue with a disparity inpainting by means
of an interpolation constrained by superpixel boundaries. Results on synthetic and real
light field images demonstrate the effectiveness of the proposed method.

1 Introduction
With the increasing popularity of computational photography brought by light field [18]
cameras such as Lytro [19] and Raytrix, simple and intuitive editing of light field images is
becoming a feature of high interest for general users. Light field editing can be combined
with the traditional refocusing feature, allowing a user to include or remove objects from the
scene or change the color, contrast or other features of the scene objects.

A simple approach for editing a light field image can be obtained with an edit propa-
gation, where first a particular subaperture view is edited (most likely the center one) and
then a coherent propagation of this edit is performed through the other views [23] [17] [28].
This problem is particularly challenging for the task of inpainting, as the disparity field is
unknown under the occludding mask.

This paper provides a novel and efficient solution to this problem, where we address an
angularly coherent propagation of local edits through an approach we call epipolar plane
diffusion, as it performs an anisotropic diffusion on epipolar plane images. Anisotropic
diffusion has been extensively applied to solve image editing problems such as inpainting,
due to properly modeling piecewise smooth image content. However, diffusion approaches
met a diminished usage in inpainting due to their limited capability of reconstructing image
textures.

In this work, we revisit anisotropic diffusion, showing that tensor driven diffusion is an
appropriate model to be applied to Epipolar Plane Images (EPI) derived from light fields.

c© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Levoy and Hanrahan} 1996

Citation
Citation
{Ng} 2006

Citation
Citation
{Seitz and Kutulakos} 2002

Citation
Citation
{Jarabo, Masia, and Gutierrez} 2011

Citation
Citation
{Williem, Shon, and Park} 2016



2 FRIGO, GUILLEMOT: EPIPOLAR PLANE DIFFUSION

Since EPIs are piecewise smooth and have no complex texture content, tensor driven diffu-
sion is naturally suited for inpainting the EPIs as an efficient technique to obtain a coherent
edit propagation.

To summarize, the present work makes the following contributions, which are novel for
the best of our knowledge:

• An application of tensor-based diffusion to inpaint epipolar plane images and obtain
angularly coherent edit propagation;

• A new method to obtain disparity inpainting, based on a superpixel-guided interpola-
tion of structure tensors.

The paper is organized as follows: Section 2 discusses previous work related to light
field editing, inpainting and anisotropic diffusion; Sec. 3 presents our epipolar plane dif-
fusion method; Sec. 4 discusses the application of our method to light field recolorization
and inpainting; Sec. 5 demonstrates the efficiency of the proposed algorithm through exper-
iments with synthetic and real light field images. Finally, Sec. 6 concludes the paper with
final considerations and suggestions of future work.

2 Related Work

2.1 Light field editing
Light field edit propagation has been first discussed by [23], where the authors describe an
approach using a 3D voxel-based model of the scene with an associated radiance function
to propagate pixel edits and illumination changes in a consistent manner from one view to
the other views of the light field. The authors in [17] extend the 2D image stroke-based edit
propagation method of [2] to light fields. To overcome the computational burden inherent
to light field data, the edits are propagated in a downsampled version of the light field. In
[3], a method based on a reparametization of the light field is proposed to better preserve
the coherence of the edits in the angular domain. These papers differ from our work as they
deal with stroke-based editing and were not intended for more complex editing tasks such as
inpainting.

The recent article of [29] share some similarities with our method as the central view is
edited beforehand, using a 2D patch-based method. The offsets between the filled patches
and their best match in the known region are propagated to other views, with the help of
disparity information, in order to fill them in a consistent manner. This work is applied
to light field recolorization and inpainting, however the specific problem of disparity map
inpainting is not handled.

2.2 Light field Inpainting
The term inpainting was first used by Bertalmio et. al in [4] and is borrowed from its use
in fine arts for the process of restoring damaged parts of images. The inpainting problem
was formulated as recovering a selected region Ωm (occluding mask) by propagating the
intensities from the boundary ∂Ωm to the center of the unknown area along similar level
lines (called isophotes). A number of works [4] [7] [24] considered this propagation as an
anisotropic diffusion which is the solution of a partial differential equation (PDE). These
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inpainting methods based on PDEs are able to reconstruct geometry, but not texture. Nev-
ertheless, we show in this work that they are adequate for the inpainting of epipolar plane
images, which have no texture content.

A second wave of inpainting methods appeared after the work of Criminisi et. al [10],
which was influenced by patch-based texture synthesis [14] [13]. Patch-based approaches
are able to inpaint textures but can fail to correctly reconstruct geometry, which motivated
some works to combine patch-based and PDE-based inpainting [5].

With the advances in machine learning, in particular convolutional neural networks and
auto-encoders, inpainting methods such as [20] can correctly reconstruct image geometries,
textures and semantic content. Such methods could be combined with the approach intro-
duced in this paper, as we propose to propagate a 2D inpainting computed on the central
view (for instance obtained with [20]) to the complete set of light field views. An extensive
survey on 2D inpainting can be found in [16].

With respect to light field inpainting, there are far fewer works in the literature. In [28],
the authors extend the exemplar-based method of [10] for light field inpainting. One of
the views is inpainted first using a 2D method. For the other views, instead of searching a
best matching patch in the known region of the view to inpaint, the patch is searched in the
first inpainted view in order to ensure a better consistency across views. A 4D patch-based
method is also considered in [9], where consistency is ensured by minimizing a 4D patch
bi-directional similarity measure. In the variational framework proposed by [15], various
inverse problems are solved, including inpainting. By exploiting depth information, they
define constraints on the structure of the epipolar plane images of the light field, thus ensuring
a consistent inpainting accross views. Inpainting of the disparity map is briefly discussed by
the authors, where a linear interpolation is followed by variational regularization. We note in
our work that an unconstrained interpolation of the disparity map such as performed by [15]
can lead to depth inconsistency if the inpainting mask spread across different depth layers.
To handle this problem, we propose a tensor interpolation constrained by a segmentation of
the edited central view.

3 Epipolar Plane Diffusion
In a nutshell, our approach imposes angular coherency for light field editing by inpainting
the epipolar plane images. Inpainting is modeled as an anisotropic diffusion on EPIs, guided
by structure tensors.

Let L : Ω×Π→R3 be a light field with spatial coordinates (x,y)∈Ω, spatial dimension-
ality |Ω| = M×N, angular coordinates (s, t) ∈ Π and angular dimensionality |Π| = P×Q.
In other words, the light field image L can be seen as a matrix of P×Q views.

The central view of L is denoted Ic := L(x,y,dP
2 e,d

Q
2 e). In this paper, it is assumed that

the central view Ic has been edited beforehand and the goal is to obtain angular coherence
between the edited central view Îc and the remaining views.

An EPI is a spatio-angular slice from the light field, obtained by fixing one of the spatial
coordinates and one of the angular coordinates. Assuming we fix y := y∗ and t := t∗, an EPI
is an image defined as Ey∗,t∗ := L(x,y∗,s, t∗). It is well known that the slopes of isophote
lines in an EPI give the amount of disparity between the views belonging to the same light
field row or column. Since the structure tensors computed from an EPI contain the gradient
magnitudes and orientations, they naturally encapsulate inter-view disparities. Our goal here
is to diffuse the edited part from the central view to the peripheric views, ensuring that this
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Original light field with edited central view Structure tensor computation

Dominant structure tensors

Noisy Denoised Inpainted

Original EPI - edited central view superposed

Inpainting mask intersecting at EPI

Tensor driven diffusion

Tensor regularization and inpainting

Original structure tensors

Resulting diffusion: Remaining row-by-row edit propagations

: First edit propagation on center column

Figure 1: Overview of the proposed method. In the green box, it is illustrated a light field with an inpainted
central view. We illustrate the original light field after a first edit propagation, which is performed through the
center column of views (red arrows). Remaining edit propagations are performed row-by-row (blue arrows). The
remaining boxes illustrate the steps of epipolar plane diffusion: Structure tensor computation (Eq. 1) where we
obtain dominant structure tensors (Eq. 2); From dominant structure tensors we compute a spatial regularization
(Eq. 3) and tensor inpainting (Eq. 6); and finally a tensor driven diffusion (Eq. 4) on EPIs. The output views are
reconstructed from the resulting diffusions on the EPIs.

diffusion follows the orientation of the EPI structure tensors.
An overview of our method is illustrated in Fig. 1. Note that the EPIs in a light field

connect together the subaperture views from the same row (or column) of the light field,
accounting for only horizontal (or only vertical) disparities. Our proposed epipolar plane
diffusion allows to propagate an editing from the center view of a light field row (or col-
umn), to the other views of same row (or column). There are different possibilities for the
propagation order, here we arbitrarily first compute a propagation through the central column
of the light field, and in the sequence we compute a row-by-row tensor driven diffusion.

3.1 Tensor Driven Diffusion
In this work, we rely on the smoothed structure tensors computed from the EPI to estimate
the diffusion tensors which are related to the disparity between views. For an EPI Ey∗,t∗ and
Gaussian kernel gσ with variance σ2, the smoothed structure tensor at coordinate (x,s) is
given by:

Tσ (x,s) = ∇Ey∗,t∗(x,s)∇Ey∗,t∗(x,s)T ∗gσ . (1)

To ensure that the tensor driven diffusion is performed along a single coherent direction
per column of the EPI, we compute one dominant structure tensor T̄σ (x) for each spatial
coordinate x as a weighted average:

T̄σ (x) =
∑

P
s=1 A(x,s)Tσ (x,s)

∑
P
s=1 A(x,s)

, (2)

where A(x,s) =
(

λ+−λ−
λ++λ−

)2
∈ [0,1] measures the anisotropy of the structure tensor at coor-

dinate (x,s) and λ+,λ− are respectively the largest and the smallest eigenvalues computed
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from Tσ (x,s). Basically, structure tensors that are anisotropic indicate higher coherence, thus
we enforce them to receive larger weights in the estimation of a dominant structure tensor.

The orthonormal eigenvectors θ+ ∈R2 and θ− ∈R2 computed from structure tensors are
used in a number of works to drive an anisotropic diffusion. Here we are mostly interested
in θ−, which corresponds to the smallest eigenvalue λ−. Note that θ− is the eigenvector that
gives the direction of constant intensity lines, and as such it can be considered as the isophote
eigenvector, being directly related to the disparities between views.

As noted by [25], the pointwise structure tensors computed from an EPI may be too noisy
for a reliable disparity estimation. The gaussian smoothing and the weighted average reduces
the noise, but a further regularization is necessary. From the observation that disparity maps
are approximately piecewise constant, we compute a spatial regularization by performing a
Total Variation (TV-L1) denoising [22] on the eigenvector field Θ− : Ω→ R2, which is the
set of all isophote eigenvectors computed from the dominant structure tensors T̄σ . Given a
noisy observed Θ−, we search for

Θ̂− = argmin
Θ̂−

||∇Θ̂−||+λtv||Θ̂−−Θ−|| (3)

where λtv is the regularization parameter, λtv := 0.5 in our experiments. In practice, mini-
mization is obtained by the Primal-Dual algorithm [6].

We note that structure tensors computed from EPIs were already proposed in the previous
work of [25] for light field disparity estimation in a variational framework. Our work differs
from that as we use these structure tensors as diffusion tensors in an anisotropic diffusion.
As mentioned in Section 2, in this paper we build upon the vector-valued regularization PDE
of Tschumperlé and Deriche [24] to perform a tensor driven diffusion. The diffusion over
the EPI Ey∗,t∗ evolves as follows:

∂Ey∗,t∗
∂ t

= trace(T Ht) (4)

where T = f (T̄σ ) is the tensor field driving the diffusion and Ht denotes the hessian of Ey∗,t∗.
Note that different propositions for f exist in the literature, depending on the reconstruction
problem to be solved. Here we are interested in a setting where diffusion should occur only
in the direction of the isophote eigenvector, where T is a diffusion tensor reconstructed as
T = Θ̂−Θ̂T

−.
The tensor based diffusion is performed on the region inside the inpainting mask and

is implemented by iterative finite differences. In Figure 1 (purple box) we illustrate the
diffusion on the EPI, where an EPI mask can be seen. Differently to typical inpainting
applications where image intensities are diffused from the border to the center of Ωm, here
we have the inverse setting, where the center of the mask is initially known (the central view
intensities) and we desire to propagate these intensities into the periphery of the mask. In
order to have known intensities on the EPI mask boundaries, we first shift the intensities from
the central row to the first and the last rows of the EPI mask. This shift is performed based

on the disparity measure ∆ =
θ̂ x
−

θ̂ s
−

which accounts to the ratio between the x and s components

of the isophote eigenvector θ̂− ∈ Θ̂−. Then, the remaining rows of the EPI are completed by
diffusion, which prevents from line aliasing.
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4 Applications
In this section, we discuss how our method can be used for light field editing applications,
in particular recolorization and inpainting. Both applications are based on the idea of first
editing the central light field view, either manually or using available algorithms and then
propagating this edit to the remaining light field views. We consider a local editing, where a
specific region of the central light field view is edited, this region is given by a mask Ωm ⊂Ω.

4.1 Light Field Recolorization
Recolorization consists in modifying the color palette of an image, either manually or based
on color transfer algorithms which rely on example images. Here we are interested in local
recolorization, where color editing occurs inside a mask Ωm.

Local recolorization is obtained in a straightforward manner with our proposed epipolar
plane diffusion, based on the procedures described in Section 3. Results can be seen in
Section 5.

4.2 Light Field Inpainting
The light field inpainting application is particularly challenging, as the disparities between
the views are not determined for the pixel coordinates which are lying on the inpainting mask
Ωm. It follows that the disparity map should be inpainted for a correct propagation of the
inpainted region from the central view to the peripheric views.

By means of disparity interpolation, we can enforce the disparities inside the inpainting
mask to be similar to the disparities surrounding the mask. However, if we naively interpo-
late the unknown disparities based on the nearest known disparities, depth boundaries may
be violated, and disparity values from different depth layers may be mixed together in the
interpolation.

To overcome this issue, we assume that inside the inpainting mask, disparity clusters
are likely to have shape and boundaries similar to the known color clusters. In practice, we
consider a segmentation of the edited central view Îc into SLIC superpixels [1], where each
superpixel account for a color cluster on Îc. Superpixels are an adequate image partition-
ing for this problem since their boundaries tend to respect object boundaries in the image.
Hence, the main purpose of superpixel segmentation is to enforce the disparity interpolation
to respect depth boundaries in the light field.

We consider a superpixel set S = {si}Ns
i=1 which is a spatial partition of the inpainted

central view Îc. Then, the unknown disparity at a pixel is obtained by a linear combination
of the nearest known disparities which belong to the same superpixel si.

A preliminary superpixel merging is required to ensure that for every superpixel, at least
K pixels (K := 4 in our experiments) have known disparities from which the interpolation
can be computed. Formally, if we assume that a superpixel si ∈ S has less than K known
disparities, then si is merged to the most similar neighbor superpixel s j ∈ Nsi , where Nsi is
the neighborhood of si. The most similar superpixel is given by

argmin
s j∈Nsi

||µs(si)−µs(s j)||+ ||σ2
s (si)−σ

2
s (s j)|| (5)

where µs(.) is the mean superpixel color and σ2
s (.) is the superpixel variance, which are

both computed in CIELAB color space. Finally, the interpolated eigenvector at a masked
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a) b) c) d)

Figure 2: Illustration of disparity inpainting. a) Superpixel segmentation of inpainted central view. b) Disparity
map computed from original light field. c) Disparities computed with our superpixel guided interpolation. d)
Disparities computed with a non-constrained interpolation.

coordinate p = (px, py) ∈ si∩Ωm is given by

Θ̂−(p) = ∑
q∈NN(p)

w(p,q)Θ̂−(q), (6)

where NN(p) is the set of K nearest neighbors of p and w is an inverse-distance weighting
factor. The weights are given by

w(p,q) =
1
Z

exp
(
−d(p,q)

σ2
NN

)
(7)

where Z is a normalization factor that sums up weights to 1 and σ2
NN is the variance of the

nearest neighbor distances. The set of nearest neighbors of p is given by

NN(p) = argmin
qk∈s̃i

d(p,qk) k = {1, ...,K} (8)

where s̃i = si \ si ∩Ωm is the set of non-masked coordinates at superpixel si, and d is a
distance that takes into account spatial and color differences:

d(p,q) = (p−q)2 +(Îc(p)− Îc(q))2. (9)

In Figure 2 we illustrate the super-pixel based eigenvector interpolation. It can be noted
that our superpixel-guided interpolation correctly preserves most shapes in the disparity map,
while an interpolation without any constraint tends to violate depth boundaries.

5 Results and Discussion
This section presents experiments with the method proposed in this paper. In Fig. 3, we
show the results of our approach applied to recolorization and inpainting of the synthetic
light field “Butterfly”. For this experience, first the central view is recolored and inpainted
manually with an image manipulation tool, and then the editing is propagated through the
light field with our method. Note that the inpainting propagation is challenging for this light
field, since the inpainting mask crosses different depth layers (leaves and ground). Still,
our method succesfully propagates the recolorization and inpainting through all the views,
resulting in a coherent image refocusing.
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Figure 3: Results of edit propagation with our method on synthetic light field. The inpainting mask contour is
represented in red color.

Experiments with two real light fields, obtained with the camera Lytro 1.0 and rendered
with the pipeline of [12], are shown in Fig. 4. To alleviate color fluctuations between views,
we first perform a histogram specification between the central and remaining views. The
central view is inpainted by the patch-based method of [11]. Since we do not have access to
the implementation of the few previous works on light field edit propagation, we compare our
method with a baseline algorithm, which performs edit propagation by view warping based
on optical flow. We estimate the optical flows between the views with the state-of-the-art
method of [27] and warp the edited central view based on the estimated disparity fields.

In Fig. 4, it can be seen that the edit propagation obtained with the baseline fails to
correctly propagate the edit on the central view, resulting in a refocusing with noticeable in-
consistency. Note that the inpainting mask is still visible after refocusing, where foreground
and background areincoherently mixed. On the other hand, our method allows for a coherent
edit propagation with correct refocusing at foreground and background.

We note that our unoptimized implementation in python takes in average one minute to
propagate an inpainting to all light field views (Lytro 1.0 image), but our algorithm could
greatly benefit from parallel processing. We invite the reader to access our project web-
site (http://oriel.github.io/epipolar_plane_diffusion.html), where
we provide more results obtained with our method.

6 Conclusion
This paper presented a new approach for the propagation of light field edits based on dif-
fusion on epipolar plane images. Our results on synthetic and real light field images have
demonstrated the efficiency of the proposed method. This work has been focused on local
light field editing, where a portion of the central view is edited, as shown in the inpainting
and recolorization applications. Future work may extend the approach for global light field
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Figure 4: Inpainting on real light fields, performed with a baseline and our method. It can be particularly noted
in the zoomed areas that the refocusing using the baseline method (orange circles) incorrectly mixes “in focus”
and “out of focus” pixels, while the light field inpainted with our method (note the yellow zoom circles) results in
consistent refocusing. The inpainting mask contour is represented in red color.
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processing, for which our approach could be used to guarantee angular coherence for other
tasks such as segmentation and super-resolution. For that, occlusions should be carefully
handled in the epipolar plane diffusion.

Finally, we believe this paper may inspire new approaches for using tensor diffusion
with light field images. For instance, 4D structure tensors could be employed to obtain
simutaneously spatial and angular coherence in light field reconstruction problems.
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